Theoretical study on the inherently anisotropic MICP-cemented sand by micromechanics-based model

IF 2.4 3区 工程技术
Zhihao Zhou, Huaning Wang, Mingjing Jiang
{"title":"Theoretical study on the inherently anisotropic MICP-cemented sand by micromechanics-based model","authors":"Zhihao Zhou,&nbsp;Huaning Wang,&nbsp;Mingjing Jiang","doi":"10.1007/s10035-025-01514-x","DOIUrl":null,"url":null,"abstract":"<div><p>Microbially induced calcite precipitation (MICP) is a promising technology for soil improvement, where the treated soil can be regarded as the structural one. In this study, a micromechanics-based model is proposed to investigate the mechanical behaviors of inherently anisotropic MICP-cemented sand, which consists of a hexagonal close-packed (HCP) particle assembly (2D) composed of bonded elliptical particles with same size. A size-dependent bond failure criterion is adopted to define the microscopic mechanical reactions between the particles to model the nonlinear characteristics of the soil. Based on the homogenization theory and lattice model, the stress–strain relationship, strength criteria, and corresponding macroscopic mechanical parameters with respect to microscopic parameters for MICP-cemented sand are derived and verified by DEM simulation based on the regularly arranged particle assembly. The effects of key parameters, including cement content, initial void ratio, inherent anisotropy, and confining pressure, on the mechanical behaviors of MICP-cemented sand is investigated in detail, and the good agreement between the theoretical solution and laboratory test results validates the applicability of the theoretical solution for analyzing MICP-cemented sand.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01514-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microbially induced calcite precipitation (MICP) is a promising technology for soil improvement, where the treated soil can be regarded as the structural one. In this study, a micromechanics-based model is proposed to investigate the mechanical behaviors of inherently anisotropic MICP-cemented sand, which consists of a hexagonal close-packed (HCP) particle assembly (2D) composed of bonded elliptical particles with same size. A size-dependent bond failure criterion is adopted to define the microscopic mechanical reactions between the particles to model the nonlinear characteristics of the soil. Based on the homogenization theory and lattice model, the stress–strain relationship, strength criteria, and corresponding macroscopic mechanical parameters with respect to microscopic parameters for MICP-cemented sand are derived and verified by DEM simulation based on the regularly arranged particle assembly. The effects of key parameters, including cement content, initial void ratio, inherent anisotropy, and confining pressure, on the mechanical behaviors of MICP-cemented sand is investigated in detail, and the good agreement between the theoretical solution and laboratory test results validates the applicability of the theoretical solution for analyzing MICP-cemented sand.

Graphical abstract

基于微观力学模型的固有各向异性 MICP 加固砂理论研究
微生物诱导方解石降水(MICP)是一种很有前途的土壤改良技术,处理后的土壤可视为结构性土壤。本研究提出了一种基于微观力学的模型来研究具有固有各向异性的micp胶结砂的力学行为。micp胶结砂由由黏结的大小相同的椭圆颗粒组成的六边形紧密堆积(HCP)颗粒组合(2D)组成。采用尺寸相关的粘结破坏准则来定义颗粒间的微观力学反应,以模拟土体的非线性特性。基于均匀化理论和点阵模型,推导了micp胶结砂的应力应变关系、强度准则以及相应的宏观力学参数和微观参数,并通过基于规则排列的颗粒组合的DEM模拟进行了验证。详细研究了水泥掺量、初始孔隙比、固有各向异性、围压等关键参数对micp -胶结砂力学行为的影响,理论解与室内试验结果吻合良好,验证了理论解对micp -胶结砂力学行为分析的适用性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信