Bacillus atrophaeus DX-9 biocontrol against potato common scab involves significant changes in the soil microbiome and metabolome

IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jingjing Cao, Yue Ma, Jing Fu, Zhiqin Wang, Yonglong Zhao, Naiqin Zhong, Pan Zhao
{"title":"Bacillus atrophaeus DX-9 biocontrol against potato common scab involves significant changes in the soil microbiome and metabolome","authors":"Jingjing Cao,&nbsp;Yue Ma,&nbsp;Jing Fu,&nbsp;Zhiqin Wang,&nbsp;Yonglong Zhao,&nbsp;Naiqin Zhong,&nbsp;Pan Zhao","doi":"10.1007/s42994-025-00199-3","DOIUrl":null,"url":null,"abstract":"<div><p>Potato common scab (CS) is a worldwide disease, caused by <i>Streptomyces</i> spp., and its presence reduces the market value of potatoes. A nontoxic and potentially effective approach in many control strategies is the use of antagonistic microbes as biocontrol agents. In this study, <i>Bacillus atrophaeus</i> DX­9 was isolated and assessed for its ability to protect against CS. Through integrated metagenomic and metabolomic analyses, changes in the soil microbial community structure and soil properties were analyzed to understand the effects of <i>Bacillus atrophaeus</i> DX­9 on CS. These studies revealed that DX­9 inoculation could significantly decrease CS disease rate, disease index, and the number of CS pathogens, along with an increase in soil N and P content. Our metagenomic assays identified 102 phyla and 1154 genera, and DX­9 inoculation increased the relative abundances of the phyla Pseudomonadota, Chloroflexota and Gemmatimonadota. Additionally, an increase in the relative abundance of genera, such as <i>Bradyrhizobium</i>, <i>Agrobacterium</i>, and <i>Nitrobacter</i>, were significantly and positively correlated with soil N and P. Metabolomic analysis revealed that DX­9 inoculation significantly increased the soil levels of phytolaccoside A, 7,8­dihydropteroic acid, novobiocin, and azafrin. These compounds were enriched in microbe pathway metabolites, including xenobiotic biodegradation and metabolism, biosynthesis of other secondary metabolites, and metabolism of cofactors and vitamins. In summary, the use of <i>Bacillus atrophaeus</i> DX­9 against potato CS offers an alternative biocontrol method that can improve both soil microbial community and properties. This study provides insight into the potential mechanisms by which microbial inoculants can control CS disease.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"6 1","pages":"33 - 49"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-025-00199-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://link.springer.com/article/10.1007/s42994-025-00199-3","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Potato common scab (CS) is a worldwide disease, caused by Streptomyces spp., and its presence reduces the market value of potatoes. A nontoxic and potentially effective approach in many control strategies is the use of antagonistic microbes as biocontrol agents. In this study, Bacillus atrophaeus DX­9 was isolated and assessed for its ability to protect against CS. Through integrated metagenomic and metabolomic analyses, changes in the soil microbial community structure and soil properties were analyzed to understand the effects of Bacillus atrophaeus DX­9 on CS. These studies revealed that DX­9 inoculation could significantly decrease CS disease rate, disease index, and the number of CS pathogens, along with an increase in soil N and P content. Our metagenomic assays identified 102 phyla and 1154 genera, and DX­9 inoculation increased the relative abundances of the phyla Pseudomonadota, Chloroflexota and Gemmatimonadota. Additionally, an increase in the relative abundance of genera, such as Bradyrhizobium, Agrobacterium, and Nitrobacter, were significantly and positively correlated with soil N and P. Metabolomic analysis revealed that DX­9 inoculation significantly increased the soil levels of phytolaccoside A, 7,8­dihydropteroic acid, novobiocin, and azafrin. These compounds were enriched in microbe pathway metabolites, including xenobiotic biodegradation and metabolism, biosynthesis of other secondary metabolites, and metabolism of cofactors and vitamins. In summary, the use of Bacillus atrophaeus DX­9 against potato CS offers an alternative biocontrol method that can improve both soil microbial community and properties. This study provides insight into the potential mechanisms by which microbial inoculants can control CS disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
2.80%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信