{"title":"Multiscale progressive 3D geological modeling based on isochronous stratigraphy identification in urban underground space","authors":"You Zhang, Ling-Ling He, Yu-Yong Jiao, Han-Fa Peng, Shun-Chang Liu, Qian-Bing Zhang","doi":"10.1007/s10064-025-04185-3","DOIUrl":null,"url":null,"abstract":"<div><p>3D geological modeling facilities the visualization of geological conditions to hone engineering decisions in the utilization of urban underground space, but it poses significant challenges due to multiscale application scenarios within different resolutions, as well as complex coupled modeling procedures between geometry and properties. Massive multisource geological data have been collected in Wuhan city. Nevertheless, a regional 3D geological model had not been established yet. To address these issues, a multigrid progressive 3D geological modeling scheme is proposed and then adopted to multiscale progressive 3D geological modeling in Wuhan city. Initially, the geological framework is established with grid division according to the regional geological evolution surveys, and 3D geological structure modeling is subsequently implemented by discrete smooth interpolation method leveraging borehole and synthetic data extracted from geological profiles with nodes identification. Following isochronous stratigraphy features analysis of geological properties and borehole density assessment within grid subdivision, the 3D property model is built using an optimized ordinary kriging method constrained by the multiscale structure model. Finally, the 3D geological model is validated and updated under the multiscale framework in conjunction with new site investigations. The multiscale progressive 3D geological modeling workflow is employed in urban metro construction scenarios, and it paves a way to promote the application of geological survey achievements in the whole life cycle of urban underground space development.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04185-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
3D geological modeling facilities the visualization of geological conditions to hone engineering decisions in the utilization of urban underground space, but it poses significant challenges due to multiscale application scenarios within different resolutions, as well as complex coupled modeling procedures between geometry and properties. Massive multisource geological data have been collected in Wuhan city. Nevertheless, a regional 3D geological model had not been established yet. To address these issues, a multigrid progressive 3D geological modeling scheme is proposed and then adopted to multiscale progressive 3D geological modeling in Wuhan city. Initially, the geological framework is established with grid division according to the regional geological evolution surveys, and 3D geological structure modeling is subsequently implemented by discrete smooth interpolation method leveraging borehole and synthetic data extracted from geological profiles with nodes identification. Following isochronous stratigraphy features analysis of geological properties and borehole density assessment within grid subdivision, the 3D property model is built using an optimized ordinary kriging method constrained by the multiscale structure model. Finally, the 3D geological model is validated and updated under the multiscale framework in conjunction with new site investigations. The multiscale progressive 3D geological modeling workflow is employed in urban metro construction scenarios, and it paves a way to promote the application of geological survey achievements in the whole life cycle of urban underground space development.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.