{"title":"Influence of Membrane Curvature on the Energy Barrier of Pore Formation","authors":"R. J. Molotkovsky, P. V. Bashkirov","doi":"10.1134/S1990747825700011","DOIUrl":null,"url":null,"abstract":"<p>Formation of through conducting defects—pores—in the lipid bilayer affects many processes in living cells and can lead to strong changes in cellular metabolism. Pore formation is a complex topological rearrangement and occurs in several stages: first, a hydrophobic through pore is formed, then it is reconstructed into a hydrophilic pore with a curved edge, the expansion of which leads to membrane rupture. Pore formation does not occur spontaneously, since it requires significant energy costs associated with membrane deformation. The evolution of the system is associated with overcoming one or two energy barriers, the ratio of their heights affects the stability of the pore and the probability of its formation. We study the effect of membrane curvature on the height of the energy barrier for the transition of a pore to a metastable hydrophilic state. We apply the theory of elasticity of lipid membranes and generalize the model of pore formation in flat membranes to the case of arbitrary curvature. We show that the barrier for pore formation decreases by 8<i>k</i><sub>B</sub><i>T</i> when the radius of curvature decreases from 1000 to 10 nm, which facilitates the formation of a metastable pore. Our results are consistent with experimental data and can be used to model complex processes occurring in curved regions of living cell membranes.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"18 1 supplement","pages":"S1 - S11"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747825700011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Formation of through conducting defects—pores—in the lipid bilayer affects many processes in living cells and can lead to strong changes in cellular metabolism. Pore formation is a complex topological rearrangement and occurs in several stages: first, a hydrophobic through pore is formed, then it is reconstructed into a hydrophilic pore with a curved edge, the expansion of which leads to membrane rupture. Pore formation does not occur spontaneously, since it requires significant energy costs associated with membrane deformation. The evolution of the system is associated with overcoming one or two energy barriers, the ratio of their heights affects the stability of the pore and the probability of its formation. We study the effect of membrane curvature on the height of the energy barrier for the transition of a pore to a metastable hydrophilic state. We apply the theory of elasticity of lipid membranes and generalize the model of pore formation in flat membranes to the case of arbitrary curvature. We show that the barrier for pore formation decreases by 8kBT when the radius of curvature decreases from 1000 to 10 nm, which facilitates the formation of a metastable pore. Our results are consistent with experimental data and can be used to model complex processes occurring in curved regions of living cell membranes.
期刊介绍:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.