Isolated human adipose microvessels retain native microvessel structure and recapitulate sprouting angiogenesis

IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE
Sarah M. Moss, Thomas Gerton, Hannah A. Strobel, James B. Hoying
{"title":"Isolated human adipose microvessels retain native microvessel structure and recapitulate sprouting angiogenesis","authors":"Sarah M. Moss,&nbsp;Thomas Gerton,&nbsp;Hannah A. Strobel,&nbsp;James B. Hoying","doi":"10.1007/s10456-025-09972-w","DOIUrl":null,"url":null,"abstract":"<div><p>With interest growing in modeling more complex aspects of human disease in the laboratory, the need for effectively vascularizing human tissue models is becoming paramount. However, fully recreating human tissue microvasculatures is challenging given the multicellular complexity of the microvessel and microvessel-tissue interplay. Importantly, effective models should capture the dynamic activity of the perivascular cells of the perivascular niche, which are critical to tissue hemostasis and function. Isolated microvessel fragments from rodent adipose have been extensively studied and used in a variety of vascularization models. We have progressed this proven technology by deriving isolated fragments of intact human microvessels harvested from adipose (haMVs) to model human vascularization and advance human vascularized tissue models. Here we show the haMVs retain native microvessel structures, including perivascular cellularity, and recapitulate bona fide sprouting angiogenesis in vitro through distinct sprouting and neovessel elongation phases. As primary isolates, the angiogenic potential varies between donor lots and correlates with the presence of haMV perivascular cells. In an in vitro model of tumor angiogenesis, the addition of anti-tumor agents impacted tumor cell expansion in the presence of the haMVs but not endothelial cells alone demonstrating the importance of the perivascular cells in tissue modeling. The human adipose microvessels offer, in a single reagent, a more complex, dynamic human tissue model vascularization solution.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":"28 2","pages":""},"PeriodicalIF":9.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angiogenesis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s10456-025-09972-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

Abstract

With interest growing in modeling more complex aspects of human disease in the laboratory, the need for effectively vascularizing human tissue models is becoming paramount. However, fully recreating human tissue microvasculatures is challenging given the multicellular complexity of the microvessel and microvessel-tissue interplay. Importantly, effective models should capture the dynamic activity of the perivascular cells of the perivascular niche, which are critical to tissue hemostasis and function. Isolated microvessel fragments from rodent adipose have been extensively studied and used in a variety of vascularization models. We have progressed this proven technology by deriving isolated fragments of intact human microvessels harvested from adipose (haMVs) to model human vascularization and advance human vascularized tissue models. Here we show the haMVs retain native microvessel structures, including perivascular cellularity, and recapitulate bona fide sprouting angiogenesis in vitro through distinct sprouting and neovessel elongation phases. As primary isolates, the angiogenic potential varies between donor lots and correlates with the presence of haMV perivascular cells. In an in vitro model of tumor angiogenesis, the addition of anti-tumor agents impacted tumor cell expansion in the presence of the haMVs but not endothelial cells alone demonstrating the importance of the perivascular cells in tissue modeling. The human adipose microvessels offer, in a single reagent, a more complex, dynamic human tissue model vascularization solution.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Angiogenesis
Angiogenesis PERIPHERAL VASCULAR DISEASE-
CiteScore
21.90
自引率
8.20%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Angiogenesis, a renowned international journal, seeks to publish high-quality original articles and reviews on the cellular and molecular mechanisms governing angiogenesis in both normal and pathological conditions. By serving as a primary platform for swift communication within the field of angiogenesis research, this multidisciplinary journal showcases pioneering experimental studies utilizing molecular techniques, in vitro methods, animal models, and clinical investigations into angiogenic diseases. Furthermore, Angiogenesis sheds light on cutting-edge therapeutic strategies for promoting or inhibiting angiogenesis, while also highlighting fresh markers and techniques for disease diagnosis and prognosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信