In situ hydrogen production in all-level-humidity air: integrating atmospheric water harvesting with photocatalysis†

EES catalysis Pub Date : 2025-01-02 DOI:10.1039/D4EY00258J
Xueli Yan, Li Tian, Fei Xue, Jie Huang, Rui Zhao, Xiangjiu Guan, Jinwen Shi, Wenshuai Chen and Maochang Liu
{"title":"In situ hydrogen production in all-level-humidity air: integrating atmospheric water harvesting with photocatalysis†","authors":"Xueli Yan, Li Tian, Fei Xue, Jie Huang, Rui Zhao, Xiangjiu Guan, Jinwen Shi, Wenshuai Chen and Maochang Liu","doi":"10.1039/D4EY00258J","DOIUrl":null,"url":null,"abstract":"<p >H<small><sub>2</sub></small> production from air holds great promise as a sustainable method for green energy harvesting. However, its widespread adoption faces challenges in realizing mobile, distributed, community-managed, off-grid <em>in situ</em> H<small><sub>2</sub></small> production systems. Here, we report a bilayer nanofibrillated cellulose composite gel incorporating lithium chloride hygroscopic salt and a supported SrTiO<small><sub>3</sub></small>:Al photocatalyst (denoted as NLS), designed specifically for <em>in situ</em> photocatalytic splitting of atmospheric water to produce H<small><sub>2</sub></small>, using only naturally occurring moisture and sunlight. The NLS gel features a self-supply of atmospheric water, spectral splitting for efficient solar energy delivery and complementary utilization, instantaneous H<small><sub>2</sub></small> evolution, and stable catalyst immobilization. As a result, the NLS bilayer gel successfully achieves <em>in situ</em> H<small><sub>2</sub></small> production in full-range-humidity environments, demonstrating a hygroscopicity of 4.26 g<small><sub>H<small><sub>2</sub></small>O</sub></small> g<small><sub>sorbent</sub></small><small><sup>−1</sup></small> and an H<small><sub>2</sub></small> production activity of 65.45 μmol h<small><sup>−1</sup></small> in a 90% relative humidity environment, achieving a solar-to-hydrogen efficiency of up to 0.3%. This work represents a promising step towards realizing <em>in situ</em> H<small><sub>2</sub></small> production from air across varying humidity levels, independent of geographical constraints.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 2","pages":" 297-304"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00258j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00258j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

H2 production from air holds great promise as a sustainable method for green energy harvesting. However, its widespread adoption faces challenges in realizing mobile, distributed, community-managed, off-grid in situ H2 production systems. Here, we report a bilayer nanofibrillated cellulose composite gel incorporating lithium chloride hygroscopic salt and a supported SrTiO3:Al photocatalyst (denoted as NLS), designed specifically for in situ photocatalytic splitting of atmospheric water to produce H2, using only naturally occurring moisture and sunlight. The NLS gel features a self-supply of atmospheric water, spectral splitting for efficient solar energy delivery and complementary utilization, instantaneous H2 evolution, and stable catalyst immobilization. As a result, the NLS bilayer gel successfully achieves in situ H2 production in full-range-humidity environments, demonstrating a hygroscopicity of 4.26 gH2O gsorbent−1 and an H2 production activity of 65.45 μmol h−1 in a 90% relative humidity environment, achieving a solar-to-hydrogen efficiency of up to 0.3%. This work represents a promising step towards realizing in situ H2 production from air across varying humidity levels, independent of geographical constraints.

Abstract Image

全湿度空气中的原位制氢:将大气水收集与光催化相结合†
从空气中生产氢气作为一种可持续的绿色能源收集方法具有很大的前景。然而,它的广泛采用面临着实现移动、分布式、社区管理、离网原位氢气生产系统的挑战。在这里,我们报道了一种双层纳米纤化纤维素复合凝胶,其中含有氯化锂吸湿盐和负载的SrTiO3:Al光催化剂(标记为NLS),专门用于仅使用自然存在的水分和阳光进行大气水的原位光催化分裂以产生H2。NLS凝胶具有自供大气水、光谱分裂以实现高效的太阳能输送和互补利用、瞬时氢气析出和稳定的催化剂固定化等特点。结果表明,NLS双层凝胶在全湿度环境下成功地实现了原位制氢,在90%相对湿度环境下,其吸湿性为4.26 gH2O吸附剂−1,制氢活性为65.45 μmol h−1,太阳能制氢效率高达0.3%。这项工作代表了在不同湿度水平下实现空气原位制氢的有希望的一步,不受地理限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信