Comparison of Different Machine Learning Algorithms in the Mental Health Assessment of College Students

Q3 Decision Sciences
Yongsen Cai;Danling Lin;Qing Lu
{"title":"Comparison of Different Machine Learning Algorithms in the Mental Health Assessment of College Students","authors":"Yongsen Cai;Danling Lin;Qing Lu","doi":"10.13052/jicts2245-800X.1243","DOIUrl":null,"url":null,"abstract":"This paper assesses college students' mental health based on the symptom checklist 90 (SCL-90). In view of the assessment data processing and analysis, the performance of different machine learning algorithms, including random forest (RF), LightGBM3, extreme gradient boosting (XGBoost), in the classification of college students' mental health samples was compared. Moreover, the effect of different hyperparameter optimization methods (grid search, Bayesian optimization, and particle swarm optimization) was compared. The experiment on the SCL-90 assessment dataset found that the optimization effect of grid search was poor, and the highest F1 value and area under the curve (AUC) of the RF algorithm were 0.8914 and 0.9384, respectively, the highest F1 and AUC values of the XGBoost algorithm were 0.9166 and 0.9551, respectively. The LightGBM algorithm optimized by particle swarm optimization showed the best performance in the classification of mental health samples, with an F1 value of 0.9790 and an AUC of 0.9945. It also achieved optimal results when compared to machine learning algorithms such as naive Bayes and the support vector machines. The results prove the reliability and accuracy of the particle swarm optimization-improved Light-GBM algorithm in the analysis of college students' mental health assessment data. The algorithm can be applied in practice to provide an effective tool for the analysis of the mental health assessment data of college students.","PeriodicalId":36697,"journal":{"name":"Journal of ICT Standardization","volume":"12 4","pages":"409-427"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916567","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Standardization","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10916567/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This paper assesses college students' mental health based on the symptom checklist 90 (SCL-90). In view of the assessment data processing and analysis, the performance of different machine learning algorithms, including random forest (RF), LightGBM3, extreme gradient boosting (XGBoost), in the classification of college students' mental health samples was compared. Moreover, the effect of different hyperparameter optimization methods (grid search, Bayesian optimization, and particle swarm optimization) was compared. The experiment on the SCL-90 assessment dataset found that the optimization effect of grid search was poor, and the highest F1 value and area under the curve (AUC) of the RF algorithm were 0.8914 and 0.9384, respectively, the highest F1 and AUC values of the XGBoost algorithm were 0.9166 and 0.9551, respectively. The LightGBM algorithm optimized by particle swarm optimization showed the best performance in the classification of mental health samples, with an F1 value of 0.9790 and an AUC of 0.9945. It also achieved optimal results when compared to machine learning algorithms such as naive Bayes and the support vector machines. The results prove the reliability and accuracy of the particle swarm optimization-improved Light-GBM algorithm in the analysis of college students' mental health assessment data. The algorithm can be applied in practice to provide an effective tool for the analysis of the mental health assessment data of college students.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of ICT Standardization
Journal of ICT Standardization Computer Science-Information Systems
CiteScore
2.20
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信