Nonlinear stability of railway locomotive system subjected to longitudinal in-train force

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Jiacheng Wang , Liang Ling , Zhe Chen , Kaiyun Wang , Wanming Zhai
{"title":"Nonlinear stability of railway locomotive system subjected to longitudinal in-train force","authors":"Jiacheng Wang ,&nbsp;Liang Ling ,&nbsp;Zhe Chen ,&nbsp;Kaiyun Wang ,&nbsp;Wanming Zhai","doi":"10.1016/j.apm.2025.116056","DOIUrl":null,"url":null,"abstract":"<div><div>Hunting motion of railway vehicles frequently occurs due to severe operating conditions, significantly affecting trains’ running quality. This paper conducts a numerical investigation of the nonlinear stability of an in-train locomotive system subjected to longitudinal in-train forces, establishing a numerical model for the stability evaluation of a completely nonlinear locomotive system. The resultant bifurcation diagram method is adopted to elucidate the nonlinear stability properties of the in-train locomotive system. The simulation results indicate that the in-train locomotive system exhibits multiple solution forms and their combinations, which are significantly influenced by the forward speed. Two periodic motions exhibit a strong correlation with the vibrations of the carbody and the bogie respectively. The longitudinal in-train force remarkably influences the nonlinear stability of the in-train locomotive system. The compressive in-train force can reshape the global bifurcation form to a certain extent by suppressing the carbody hunting motion. In contrast, the stretched in-train force can offset the solutions from the speed range in which it originally exists.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"143 ","pages":"Article 116056"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X25001313","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hunting motion of railway vehicles frequently occurs due to severe operating conditions, significantly affecting trains’ running quality. This paper conducts a numerical investigation of the nonlinear stability of an in-train locomotive system subjected to longitudinal in-train forces, establishing a numerical model for the stability evaluation of a completely nonlinear locomotive system. The resultant bifurcation diagram method is adopted to elucidate the nonlinear stability properties of the in-train locomotive system. The simulation results indicate that the in-train locomotive system exhibits multiple solution forms and their combinations, which are significantly influenced by the forward speed. Two periodic motions exhibit a strong correlation with the vibrations of the carbody and the bogie respectively. The longitudinal in-train force remarkably influences the nonlinear stability of the in-train locomotive system. The compressive in-train force can reshape the global bifurcation form to a certain extent by suppressing the carbody hunting motion. In contrast, the stretched in-train force can offset the solutions from the speed range in which it originally exists.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematical Modelling
Applied Mathematical Modelling 数学-工程:综合
CiteScore
9.80
自引率
8.00%
发文量
508
审稿时长
43 days
期刊介绍: Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged. This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering. Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信