Theoretical analysis of double perovskite A2HfNiO6 (where A = Ba, Ca, and Sr) for structural, elastic optical, electronic, thermoelectric and magnetic properties for spintronics applications

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mudassir Ishfaq , Ali Raza Iftikhar , Hassan Ali , Khawar Ismail , Ghulam Murtaza , Gamil A. A. M. Al-Hazmi , Muhammad Jamil
{"title":"Theoretical analysis of double perovskite A2HfNiO6 (where A = Ba, Ca, and Sr) for structural, elastic optical, electronic, thermoelectric and magnetic properties for spintronics applications","authors":"Mudassir Ishfaq ,&nbsp;Ali Raza Iftikhar ,&nbsp;Hassan Ali ,&nbsp;Khawar Ismail ,&nbsp;Ghulam Murtaza ,&nbsp;Gamil A. A. M. Al-Hazmi ,&nbsp;Muhammad Jamil","doi":"10.1016/j.mseb.2025.118198","DOIUrl":null,"url":null,"abstract":"<div><div>This work comprises a thorough investigation of the structural, optical, electronic, thermoelectric, and magnetic properties of the double perovskite (DP) cubic compound A<sub>2</sub>HfNiO<sub>6</sub> (A = Sr, Ca, Ba). The electronic properties of these DPs were revealed with the assistance of the band structure, an indirect band gap with a half-metallic semiconductor nature was proposed; the band gap of Ba<sub>2</sub>HfNiO<sub>6</sub>, Sr<sub>2</sub>HfNiO<sub>6,</sub> and Ca<sub>2</sub>HfNiO<sub>6</sub> are 3.70, 2.91 and 2.42 eV respectively. The mechanical stability of these compounds was confirmed by Born stability criteria. The optical behavior was assessed using different parameters, including the optical conductivity(σ), the absorption coefficient(α), the reflectivity(R), and the loss parameter(L). Furthermore, the thermal properties were explored utilizing the electrical conductivity (σ/τ), charge carrier concentrations (n), Seebeck coefficient (s), specific heat capacity (C<sub>v</sub>), magnetic susceptibility (χ), thermal conductivity (K<sub>e</sub>/t) and power factor (PF) parameters. These values were calculated with the help of the BoltzTraP program combined with the WIEN2k, utilizing the PBE-GGA approximation in density functional theory. The presence of orbital hybridization contributed to the appearance of magnetic moments in these two components down spin (↓) and up spin (↑). Therefore, the magnetic moment of the studied materials Ca<sub>2</sub>HfNiO<sub>6</sub>, Sr<sub>2</sub>HfNiO<sub>6</sub>, and Ba<sub>2</sub>HfNiO<sub>6</sub> is 3.99990 µB, 4.00001 µB, and 4.00002 µB respectively. For spintronic applications, double perovskite oxides Ca<sub>2</sub>HfNiO<sub>6</sub>, Sr<sub>2</sub>HfNiO<sub>6</sub>, and Ba<sub>2</sub>HfNiO<sub>6</sub> may be regarded as acceptable materials since they function as half-metals and have the required magnetic saturation so, these materials could be used in the production of magnetic storage devices and magnetic circuits.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"317 ","pages":"Article 118198"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725002211","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work comprises a thorough investigation of the structural, optical, electronic, thermoelectric, and magnetic properties of the double perovskite (DP) cubic compound A2HfNiO6 (A = Sr, Ca, Ba). The electronic properties of these DPs were revealed with the assistance of the band structure, an indirect band gap with a half-metallic semiconductor nature was proposed; the band gap of Ba2HfNiO6, Sr2HfNiO6, and Ca2HfNiO6 are 3.70, 2.91 and 2.42 eV respectively. The mechanical stability of these compounds was confirmed by Born stability criteria. The optical behavior was assessed using different parameters, including the optical conductivity(σ), the absorption coefficient(α), the reflectivity(R), and the loss parameter(L). Furthermore, the thermal properties were explored utilizing the electrical conductivity (σ/τ), charge carrier concentrations (n), Seebeck coefficient (s), specific heat capacity (Cv), magnetic susceptibility (χ), thermal conductivity (Ke/t) and power factor (PF) parameters. These values were calculated with the help of the BoltzTraP program combined with the WIEN2k, utilizing the PBE-GGA approximation in density functional theory. The presence of orbital hybridization contributed to the appearance of magnetic moments in these two components down spin (↓) and up spin (↑). Therefore, the magnetic moment of the studied materials Ca2HfNiO6, Sr2HfNiO6, and Ba2HfNiO6 is 3.99990 µB, 4.00001 µB, and 4.00002 µB respectively. For spintronic applications, double perovskite oxides Ca2HfNiO6, Sr2HfNiO6, and Ba2HfNiO6 may be regarded as acceptable materials since they function as half-metals and have the required magnetic saturation so, these materials could be used in the production of magnetic storage devices and magnetic circuits.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信