Attenuation of viral replication foci in nuclei by 1,6 Hexanediol implicates phase separation in the assembly of baculoviral replication factories

IF 2.2 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Alexander D. Finoshin , Oksana I. Kravchuk , Kim I. Adameyko , Anfisa S. Ryabchenko , Vladimir A. Gushchin , Yulia V. Lyuvpina , Victor S. Mikhailov
{"title":"Attenuation of viral replication foci in nuclei by 1,6 Hexanediol implicates phase separation in the assembly of baculoviral replication factories","authors":"Alexander D. Finoshin ,&nbsp;Oksana I. Kravchuk ,&nbsp;Kim I. Adameyko ,&nbsp;Anfisa S. Ryabchenko ,&nbsp;Vladimir A. Gushchin ,&nbsp;Yulia V. Lyuvpina ,&nbsp;Victor S. Mikhailov","doi":"10.1016/j.jviromet.2025.115147","DOIUrl":null,"url":null,"abstract":"<div><div>The assembly of replication factors into functional complexes is crucial for the initiation of viral genome replication and processing of nascent viral DNA. Binding to viral DNA and interaction of protein domains presumably guide compartmentalization of replication factors. The phase separation due to hydrophilicity and hydrophobicity of components may also contribute to the assembling process. However, phase separation effects are poorly investigated in the infection cycle of baculoviruses, large DNA viruses infecting Diptera, Hymenoptera, and Lepidoptera insects. Herein, we describe an investigation on a possible role of phase separation in the assembly of nuclear replication factories in <em>Spodoptera frugiperda</em> Sf9 cells infected with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The inhibitory effect of 1,6-Hexanediol on the translocation of a viral DNA binding protein (DBP) to the replicative centers has revealed the involvement of liquid phases separation in the assembly of these centers. DBP is a structural component of the virogenic stroma, a sub-nuclear membrane-less compartment involved in viral DNA replication and the production of nucleocapsids. This sub-nuclear structure is presumably assembled via a biomolecular condensation mechanism.</div></div>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":"335 ","pages":"Article 115147"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166093425000400","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The assembly of replication factors into functional complexes is crucial for the initiation of viral genome replication and processing of nascent viral DNA. Binding to viral DNA and interaction of protein domains presumably guide compartmentalization of replication factors. The phase separation due to hydrophilicity and hydrophobicity of components may also contribute to the assembling process. However, phase separation effects are poorly investigated in the infection cycle of baculoviruses, large DNA viruses infecting Diptera, Hymenoptera, and Lepidoptera insects. Herein, we describe an investigation on a possible role of phase separation in the assembly of nuclear replication factories in Spodoptera frugiperda Sf9 cells infected with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The inhibitory effect of 1,6-Hexanediol on the translocation of a viral DNA binding protein (DBP) to the replicative centers has revealed the involvement of liquid phases separation in the assembly of these centers. DBP is a structural component of the virogenic stroma, a sub-nuclear membrane-less compartment involved in viral DNA replication and the production of nucleocapsids. This sub-nuclear structure is presumably assembled via a biomolecular condensation mechanism.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
209
审稿时长
41 days
期刊介绍: The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery. The methods may include, but not limited to, the study of: Viral components and morphology- Virus isolation, propagation and development of viral vectors- Viral pathogenesis, oncogenesis, vaccines and antivirals- Virus replication, host-pathogen interactions and responses- Virus transmission, prevention, control and treatment- Viral metagenomics and virome- Virus ecology, adaption and evolution- Applied virology such as nanotechnology- Viral diagnosis with novelty and comprehensive evaluation. We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信