Review of machine learning techniques for optimal power flow

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Hooman Khaloie, Mihály Dolányi, Jean-François Toubeau, François Vallée
{"title":"Review of machine learning techniques for optimal power flow","authors":"Hooman Khaloie,&nbsp;Mihály Dolányi,&nbsp;Jean-François Toubeau,&nbsp;François Vallée","doi":"10.1016/j.apenergy.2025.125637","DOIUrl":null,"url":null,"abstract":"<div><div>The Optimal Power Flow (OPF) problem is the cornerstone of power systems operations, providing generators’ most economical dispatch for power demands by fulfilling technical and physical constraints across the power network. To ensure safe and reliable operation of power systems, grid operators must steadily solve the nonconvex nonlinear OPF problem for immense power networks in (near) real-time, which poses tremendous computational challenges. The enormous amount of available data created by power systems digitalization and recent breakthroughs in machine learning have opened up new opportunities for grid operators to build shortcuts to predict or solve the OPF problem close to real-time. This survey overviews recent attempts at leveraging machine learning algorithms to solve the transmission-level OPF problem. On this basis, the groundwork is laid for commonly employed machine learning approaches leveraged to address the OPF problem. Subsequently, the frequently used performance evaluation metrics in learning-based OPFs are delineated to judge efficiency from diverse aspects (e.g., optimality in terms of the dispatched cost, feasibility concerning technical constraints, and computational efficiency) compared to conventional approaches. Next, the trend and progress of recently developed algorithms are discussed. Finally, the challenges and open problems at the interface of machine learning and OPF problems are highlighted.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"388 ","pages":"Article 125637"},"PeriodicalIF":10.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925003678","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The Optimal Power Flow (OPF) problem is the cornerstone of power systems operations, providing generators’ most economical dispatch for power demands by fulfilling technical and physical constraints across the power network. To ensure safe and reliable operation of power systems, grid operators must steadily solve the nonconvex nonlinear OPF problem for immense power networks in (near) real-time, which poses tremendous computational challenges. The enormous amount of available data created by power systems digitalization and recent breakthroughs in machine learning have opened up new opportunities for grid operators to build shortcuts to predict or solve the OPF problem close to real-time. This survey overviews recent attempts at leveraging machine learning algorithms to solve the transmission-level OPF problem. On this basis, the groundwork is laid for commonly employed machine learning approaches leveraged to address the OPF problem. Subsequently, the frequently used performance evaluation metrics in learning-based OPFs are delineated to judge efficiency from diverse aspects (e.g., optimality in terms of the dispatched cost, feasibility concerning technical constraints, and computational efficiency) compared to conventional approaches. Next, the trend and progress of recently developed algorithms are discussed. Finally, the challenges and open problems at the interface of machine learning and OPF problems are highlighted.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信