Ginsenoside CK inhibits EMT and overcomes oxaliplatin resistance in gastric cancer by targeting the PI3K/Akt pathway

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL
Li Zhang, Xiao-Lan Zhao, Zhang-Jing Cao, Ke-Di Li, Li-Yue Xu, Fei Tang, Jing-Nan Zhang, Cheng Peng, Hui Ao
{"title":"Ginsenoside CK inhibits EMT and overcomes oxaliplatin resistance in gastric cancer by targeting the PI3K/Akt pathway","authors":"Li Zhang,&nbsp;Xiao-Lan Zhao,&nbsp;Zhang-Jing Cao,&nbsp;Ke-Di Li,&nbsp;Li-Yue Xu,&nbsp;Fei Tang,&nbsp;Jing-Nan Zhang,&nbsp;Cheng Peng,&nbsp;Hui Ao","doi":"10.1016/j.phymed.2025.156516","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Gastric cancer remains a leading cause of cancer mortality, with oxaliplatin (L-OHP) resistance posing a major therapeutic challenge. Ginsenosides have shown potential in addressing chemoresistance.</div></div><div><h3>Purpose</h3><div>This study aimed to investigate whether ginsenoside Compound K (CK), a derivative of protopanaxadiol ginsenosides, could overcome L-OHP resistance in gastric cancer cells.</div></div><div><h3>Methods</h3><div>The anti-cancer effects of CK were investigated using L-OHP-resistant HGC27/L cells through comprehensive in vitro experiments. Cell viability, migration, invasion, apoptosis, and colony formation were evaluated under CK treatment alone or combined with L-OHP. Drug efflux was specifically assessed using Rhodamine 123 staining. To understand the molecular mechanism, network pharmacology and molecular docking analyses were employed, which identified the PI3K/Akt pathway as a crucial target of CK. This finding was further validated through Western blotting and RT-qPCR analyses, focusing on PI3K/Akt signaling components and EMT markers. Finally, drug-resistant gastric cancer xenograft models were established to evaluate the therapeutic efficacy of CK alone and in combination with L-OHP in vivo.</div></div><div><h3>Results</h3><div>CK effectively suppressed cell viability, migration, invasion, drug efflux, and colony formation while enhancing apoptosis in resistant cells. Mechanistically, CK inhibited the PI3K/Akt pathway, leading to reduced P-glycoprotein (P-gp) expression and EMT reversal. These effects were confirmed using PI3K pathway modulators. In xenograft models, CK significantly inhibited tumor growth and reduced PI3K/Akt activity, P-gp expression, and EMT markers.</div></div><div><h3>Conclusion</h3><div>This study demonstrates that CK overcomes L-OHP resistance through PI3K/Akt pathway inhibition and EMT prevention, suggesting that combining CK with L-OHP may improve outcomes in chemoresistant gastric cancer patients.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"140 ","pages":"Article 156516"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325001576","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Gastric cancer remains a leading cause of cancer mortality, with oxaliplatin (L-OHP) resistance posing a major therapeutic challenge. Ginsenosides have shown potential in addressing chemoresistance.

Purpose

This study aimed to investigate whether ginsenoside Compound K (CK), a derivative of protopanaxadiol ginsenosides, could overcome L-OHP resistance in gastric cancer cells.

Methods

The anti-cancer effects of CK were investigated using L-OHP-resistant HGC27/L cells through comprehensive in vitro experiments. Cell viability, migration, invasion, apoptosis, and colony formation were evaluated under CK treatment alone or combined with L-OHP. Drug efflux was specifically assessed using Rhodamine 123 staining. To understand the molecular mechanism, network pharmacology and molecular docking analyses were employed, which identified the PI3K/Akt pathway as a crucial target of CK. This finding was further validated through Western blotting and RT-qPCR analyses, focusing on PI3K/Akt signaling components and EMT markers. Finally, drug-resistant gastric cancer xenograft models were established to evaluate the therapeutic efficacy of CK alone and in combination with L-OHP in vivo.

Results

CK effectively suppressed cell viability, migration, invasion, drug efflux, and colony formation while enhancing apoptosis in resistant cells. Mechanistically, CK inhibited the PI3K/Akt pathway, leading to reduced P-glycoprotein (P-gp) expression and EMT reversal. These effects were confirmed using PI3K pathway modulators. In xenograft models, CK significantly inhibited tumor growth and reduced PI3K/Akt activity, P-gp expression, and EMT markers.

Conclusion

This study demonstrates that CK overcomes L-OHP resistance through PI3K/Akt pathway inhibition and EMT prevention, suggesting that combining CK with L-OHP may improve outcomes in chemoresistant gastric cancer patients.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信