Towards privacy-preserving split learning: Destabilizing adversarial inference and reconstruction attacks in the cloud

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Griffin Higgins , Roozbeh Razavi-Far , Xichen Zhang , Amir David , Ali Ghorbani , Tongyu Ge
{"title":"Towards privacy-preserving split learning: Destabilizing adversarial inference and reconstruction attacks in the cloud","authors":"Griffin Higgins ,&nbsp;Roozbeh Razavi-Far ,&nbsp;Xichen Zhang ,&nbsp;Amir David ,&nbsp;Ali Ghorbani ,&nbsp;Tongyu Ge","doi":"10.1016/j.iot.2025.101558","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims to provide both privacy and utility within a split learning framework while considering both forward attribute inference and backward reconstruction attacks. To address this, a novel approach has been proposed, which makes use of class activation maps and autoencoders as a plug-in strategy aiming to increase the user’s privacy and destabilize an adversary. The proposed approach is compared with a dimensionality-reduction-based plug-in strategy, which makes use of principal component analysis to transform the feature map onto a lower-dimensional feature space. Our work shows that our proposed autoencoder-based approach is preferred as it can provide protection at an earlier split position over the tested architectures in our setting, and, hence, better utility for resource-constrained devices in edge–cloud collaborative inference (<span><math><mi>EC</mi></math></span>) systems.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"31 ","pages":"Article 101558"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254266052500071X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to provide both privacy and utility within a split learning framework while considering both forward attribute inference and backward reconstruction attacks. To address this, a novel approach has been proposed, which makes use of class activation maps and autoencoders as a plug-in strategy aiming to increase the user’s privacy and destabilize an adversary. The proposed approach is compared with a dimensionality-reduction-based plug-in strategy, which makes use of principal component analysis to transform the feature map onto a lower-dimensional feature space. Our work shows that our proposed autoencoder-based approach is preferred as it can provide protection at an earlier split position over the tested architectures in our setting, and, hence, better utility for resource-constrained devices in edge–cloud collaborative inference (EC) systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信