Mauricio González-Palacio , Mario Luna-delRisco , John García-Giraldo , Carlos Arrieta-González , Liliana González-Palacio , Christof Röhrig , Long Bao Le
{"title":"Novel RSSI-Based localization in LoRaWAN using probability density estimation similarity-based techniques","authors":"Mauricio González-Palacio , Mario Luna-delRisco , John García-Giraldo , Carlos Arrieta-González , Liliana González-Palacio , Christof Röhrig , Long Bao Le","doi":"10.1016/j.iot.2025.101551","DOIUrl":null,"url":null,"abstract":"<div><div>In localization tasks of Internet of Things (IoT) End Nodes (ENs), the network lifetime and energy efficiency are critical. Due to power constraints, traditional systems like the Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and Galileo may be unsuitable for IoT applications. As a result, Long-Range Wide Area Network (LoRaWAN) has gained attention due to its large coverage and low power requirements. Traditional localization strategies typically estimate the distance between the EN and Anchor Nodes (ANs) using the Received Signal Strength Indicator (RSSI) combined with a path loss model. However, the accuracy of such an approach can be compromised by different undesirable transmission effects, such as interference, affecting the RSSI. This work introduces a novel distance estimation method that leverages the similarity between Probability Density Functions (PDFs) of RSSI from measurement campaigns and those from deployed ENs. By employing metrics including the enhanced versions of Euclidean and Minkowski distances, the proposed approach surpasses conventional channel-based techniques, achieving a Mean Absolute Percentage Error (MAPE) of 3.9% for wireless environments with a shadowing standard deviation up to 16<!--> <!-->dB. Furthermore, when utilizing Kernel Density Estimation (KDE) for localization, the method demonstrated an 95.1% enhancement in accuracy compared to the localization strategy based on the loglinear path loss model.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"31 ","pages":"Article 101551"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000642","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In localization tasks of Internet of Things (IoT) End Nodes (ENs), the network lifetime and energy efficiency are critical. Due to power constraints, traditional systems like the Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and Galileo may be unsuitable for IoT applications. As a result, Long-Range Wide Area Network (LoRaWAN) has gained attention due to its large coverage and low power requirements. Traditional localization strategies typically estimate the distance between the EN and Anchor Nodes (ANs) using the Received Signal Strength Indicator (RSSI) combined with a path loss model. However, the accuracy of such an approach can be compromised by different undesirable transmission effects, such as interference, affecting the RSSI. This work introduces a novel distance estimation method that leverages the similarity between Probability Density Functions (PDFs) of RSSI from measurement campaigns and those from deployed ENs. By employing metrics including the enhanced versions of Euclidean and Minkowski distances, the proposed approach surpasses conventional channel-based techniques, achieving a Mean Absolute Percentage Error (MAPE) of 3.9% for wireless environments with a shadowing standard deviation up to 16 dB. Furthermore, when utilizing Kernel Density Estimation (KDE) for localization, the method demonstrated an 95.1% enhancement in accuracy compared to the localization strategy based on the loglinear path loss model.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.