Vivian Turner , Madison Bruno , David W. Werth , Robert Buckley
{"title":"Sensitivity analysis of a parameterization of coagulation in an aqueous transport model","authors":"Vivian Turner , Madison Bruno , David W. Werth , Robert Buckley","doi":"10.1016/j.jconhyd.2025.104525","DOIUrl":null,"url":null,"abstract":"<div><div>A three-dimensional aqueous transport model, ALGE, was developed at the Savannah River National Laboratory (SRNL) as a tool for emergency response. Recently, coagulation and break-up of suspended sediment and particulate (contaminant adhered to sediment) matter has been added as a new model capability via bilinear interpolation of salinity and turbulence. A sensitivity analysis was performed by comparing time series of suspended sediment and particulate concentrations at various locations when the model's parameters (particle size and density) are altered. Concentrations produced by the model match well with the literature, producing concentrations between 0.05 and 0.25 kg/m<sup>3</sup>. Simulations of suspended sediment also show similar trends to the literature, where concentrations reach equilibrium faster in a salinity driven environment (>0.5 days) when compared to a freshwater environment (∼1 day). Sensitivity results show significant differences (<em>P</em>-values <0.05) between suspended sediment experiments in both freshwater and saltwater systems when all parameters (particle diameter, density, fraction of mass) vary, whereas significant differences (<em>P</em>-value <0.05) between particulate tracer experiments occur primarily at the source of the release.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"270 ","pages":"Article 104525"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772225000300","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A three-dimensional aqueous transport model, ALGE, was developed at the Savannah River National Laboratory (SRNL) as a tool for emergency response. Recently, coagulation and break-up of suspended sediment and particulate (contaminant adhered to sediment) matter has been added as a new model capability via bilinear interpolation of salinity and turbulence. A sensitivity analysis was performed by comparing time series of suspended sediment and particulate concentrations at various locations when the model's parameters (particle size and density) are altered. Concentrations produced by the model match well with the literature, producing concentrations between 0.05 and 0.25 kg/m3. Simulations of suspended sediment also show similar trends to the literature, where concentrations reach equilibrium faster in a salinity driven environment (>0.5 days) when compared to a freshwater environment (∼1 day). Sensitivity results show significant differences (P-values <0.05) between suspended sediment experiments in both freshwater and saltwater systems when all parameters (particle diameter, density, fraction of mass) vary, whereas significant differences (P-value <0.05) between particulate tracer experiments occur primarily at the source of the release.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.