Ibrahim Maina Idriss , Norazanita Shamsuddin , Muhammad Saifullah Abu Bakar , Yusuf Wibisono , Sutarat Thongratkaew , Kajornsak Faungnawakij , Muhammad Roil Bilad
{"title":"Standalone waste-based cellulose acetate membrane for river water treatment","authors":"Ibrahim Maina Idriss , Norazanita Shamsuddin , Muhammad Saifullah Abu Bakar , Yusuf Wibisono , Sutarat Thongratkaew , Kajornsak Faungnawakij , Muhammad Roil Bilad","doi":"10.1016/j.clwas.2025.100247","DOIUrl":null,"url":null,"abstract":"<div><div>Access to clean drinking water is a global challenge, with approximately 2 billion people lacking adequate access due to factors such as pollution, inadequate infrastructure, and socioeconomic inequalities. Natural organic matter (NOM) is a common contaminant in water sources, contributing to coloration, odors, and potential indirect health risks. Membrane filtration is an effective method for removing NOM, with various polymers used for membrane fabrication. Discarded cigarette butts are a significant source of pollution and contribute to environmental degradation. However, few studies have explored the performance of a standalone waste-based cellulose acetate (W-CA) membrane for real surface water treatment, leaving a critical knowledge gap in sustainable membrane technology. This study focuses on utilizing W-CA from cigarette butts, to produce membranes for surface water treatment. A comparison is made with commercial cellulose acetate (C-CA) and polyvinylidene difluoride (PVDF) membranes. Membranes were fabricated via the phase inversion method and characterized for hydrophilicity, morphology, pore size distribution, and surface chemistry. The W-CA membrane exhibited higher hydrophilicity, clean water permeability, and pore density when compared to C-CA and PVDF membranes. It demonstrated high pure water permeability (1315.10 Lm<sup>−2</sup>h<sup>−1</sup>bar<sup>−1</sup>) and effective removal of humic acid representing NOM, achieving a removal rate of 92.77 %. Such high permeability and substantial NOM removal underscore the novelty and practical relevance of employing W-CA for sustainable water treatment applications.</div></div>","PeriodicalId":100256,"journal":{"name":"Cleaner Waste Systems","volume":"10 ","pages":"Article 100247"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Waste Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772912525000454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Access to clean drinking water is a global challenge, with approximately 2 billion people lacking adequate access due to factors such as pollution, inadequate infrastructure, and socioeconomic inequalities. Natural organic matter (NOM) is a common contaminant in water sources, contributing to coloration, odors, and potential indirect health risks. Membrane filtration is an effective method for removing NOM, with various polymers used for membrane fabrication. Discarded cigarette butts are a significant source of pollution and contribute to environmental degradation. However, few studies have explored the performance of a standalone waste-based cellulose acetate (W-CA) membrane for real surface water treatment, leaving a critical knowledge gap in sustainable membrane technology. This study focuses on utilizing W-CA from cigarette butts, to produce membranes for surface water treatment. A comparison is made with commercial cellulose acetate (C-CA) and polyvinylidene difluoride (PVDF) membranes. Membranes were fabricated via the phase inversion method and characterized for hydrophilicity, morphology, pore size distribution, and surface chemistry. The W-CA membrane exhibited higher hydrophilicity, clean water permeability, and pore density when compared to C-CA and PVDF membranes. It demonstrated high pure water permeability (1315.10 Lm−2h−1bar−1) and effective removal of humic acid representing NOM, achieving a removal rate of 92.77 %. Such high permeability and substantial NOM removal underscore the novelty and practical relevance of employing W-CA for sustainable water treatment applications.