{"title":"Chasing in virtual environment:Dynamic alignment for multi-user collaborative redirected walking","authors":"Tianyang Dong, Shuqian Lv, Hubin Kong, Huanbo Zhang","doi":"10.1016/j.vrih.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The redirected walking (RDW) method for multi-user collaboration requires maintaining the relative position between users in a virtual environment (VE) and physical environment (PE). A chasing game in a VE is a typical virtual reality game that entails multi-user collaboration. When a user approaches and interacts with a target user in the VE, the user is expected to approach and interact with the target user in the corresponding PE as well. Existing methods of multi-user RDW mainly focus on obstacle avoidance, which does not account for the relative positional relationship between the users in both VE and PE.</div></div><div><h3>Methods</h3><div>To enhance the user experience and facilitate potential interaction, this paper presents a novel dynamic alignment algorithm for multi-user collaborative redirected walking (DA-RDW) in a shared PE where the target user and other users are moving. This algorithm adopts improved artificial potential fields, where the repulsive force is a function of the relative position and velocity of the user with respect to dynamic obstacles. For the best alignment, this algorithm sets the alignment-guidance force in several cases and then converts it into a constrained optimization problem to obtain the optimal direction. Moreover, this algorithm introduces a potential interaction object selection strategy for a dynamically uncertain environment to speed up the subsequent alignment. To balance obstacle avoidance and alignment, this algorithm uses the dynamic weightings of the virtual and physical distances between users and the target to determine the resultant force vector.</div></div><div><h3>Results</h3><div>The efficacy of the proposed method was evaluated using a series of simulations and live-user experiments. The experimental results demonstrate that our novel dynamic alignment method for multi-user collaborative redirected walking can reduce the distance error in both VE and PE to improve alignment with fewer collisions.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"7 1","pages":"Pages 26-46"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579624000378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The redirected walking (RDW) method for multi-user collaboration requires maintaining the relative position between users in a virtual environment (VE) and physical environment (PE). A chasing game in a VE is a typical virtual reality game that entails multi-user collaboration. When a user approaches and interacts with a target user in the VE, the user is expected to approach and interact with the target user in the corresponding PE as well. Existing methods of multi-user RDW mainly focus on obstacle avoidance, which does not account for the relative positional relationship between the users in both VE and PE.
Methods
To enhance the user experience and facilitate potential interaction, this paper presents a novel dynamic alignment algorithm for multi-user collaborative redirected walking (DA-RDW) in a shared PE where the target user and other users are moving. This algorithm adopts improved artificial potential fields, where the repulsive force is a function of the relative position and velocity of the user with respect to dynamic obstacles. For the best alignment, this algorithm sets the alignment-guidance force in several cases and then converts it into a constrained optimization problem to obtain the optimal direction. Moreover, this algorithm introduces a potential interaction object selection strategy for a dynamically uncertain environment to speed up the subsequent alignment. To balance obstacle avoidance and alignment, this algorithm uses the dynamic weightings of the virtual and physical distances between users and the target to determine the resultant force vector.
Results
The efficacy of the proposed method was evaluated using a series of simulations and live-user experiments. The experimental results demonstrate that our novel dynamic alignment method for multi-user collaborative redirected walking can reduce the distance error in both VE and PE to improve alignment with fewer collisions.