Finger tracking for wearable VR glove using flexible rack mechanism

Q1 Computer Science
Roshan Thilakarathna, Maroay Phlernjai
{"title":"Finger tracking for wearable VR glove using flexible rack mechanism","authors":"Roshan Thilakarathna,&nbsp;Maroay Phlernjai","doi":"10.1016/j.vrih.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>With the increasing prominence of hand and finger motion tracking in virtual reality (VR) applications and rehabilitation studies, data gloves have emerged as a prevalent solution. In this study, we developed an innovative, lightweight, and detachable data glove tailored for finger motion tracking in VR environments.</div></div><div><h3>Methods</h3><div>The glove design incorporates a potentiometer coupled with a flexible rack and pinion gear system, facilitating precise and natural hand gestures for interaction with VR applications. Initially, we calibrated the potentiometer to align with the actual finger bending angle, and verified the accuracy of angle measurements recorded by the data glove. To verify the precision and reliability of our data glove, we conducted repeatability testing for flexion (grip test) and extension (flat test), with 250 measurements each, across five users. We employed the Gage Repeatability and Reproducibility to analyze and interpret the repeatable data. Furthermore, we integrated the gloves into a SteamVR home environment using the OpenGlove auto-calibration tool.</div></div><div><h3>Conclusions</h3><div>The repeatability analysis revealed an aggregate error of 1.45 degrees in both the gripped and flat hand positions. This outcome was notably favorable when compared with the findings from assessments of nine alternative data gloves that employed similar protocols. In these experiments, users navigated and engaged with virtual objects, underlining the glove's exact tracking of finger motion. Furthermore, the proposed data glove exhibited a low response time of 17–34 ms and back-drive force of only 0.19 N. Additionally, according to a comfort evaluation using the Comfort Rating Scales, the proposed glove system is wearable, placing it at the WL1 level.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"7 1","pages":"Pages 1-25"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579624000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Background

With the increasing prominence of hand and finger motion tracking in virtual reality (VR) applications and rehabilitation studies, data gloves have emerged as a prevalent solution. In this study, we developed an innovative, lightweight, and detachable data glove tailored for finger motion tracking in VR environments.

Methods

The glove design incorporates a potentiometer coupled with a flexible rack and pinion gear system, facilitating precise and natural hand gestures for interaction with VR applications. Initially, we calibrated the potentiometer to align with the actual finger bending angle, and verified the accuracy of angle measurements recorded by the data glove. To verify the precision and reliability of our data glove, we conducted repeatability testing for flexion (grip test) and extension (flat test), with 250 measurements each, across five users. We employed the Gage Repeatability and Reproducibility to analyze and interpret the repeatable data. Furthermore, we integrated the gloves into a SteamVR home environment using the OpenGlove auto-calibration tool.

Conclusions

The repeatability analysis revealed an aggregate error of 1.45 degrees in both the gripped and flat hand positions. This outcome was notably favorable when compared with the findings from assessments of nine alternative data gloves that employed similar protocols. In these experiments, users navigated and engaged with virtual objects, underlining the glove's exact tracking of finger motion. Furthermore, the proposed data glove exhibited a low response time of 17–34 ms and back-drive force of only 0.19 N. Additionally, according to a comfort evaluation using the Comfort Rating Scales, the proposed glove system is wearable, placing it at the WL1 level.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信