Tao Lu, Xin Wu, Yigang Wang, Ping Shang, Zefei Zhu
{"title":"Finite element analysis and experimental study on fretting wear of different contact surfaces of fir-tree joint","authors":"Tao Lu, Xin Wu, Yigang Wang, Ping Shang, Zefei Zhu","doi":"10.1016/j.triboint.2025.110631","DOIUrl":null,"url":null,"abstract":"<div><div>Under extreme load conditions of aircraft engines, the multi-tooth structure of the fir-tree joint can improve power output, but it also causes uneven fretting wear between contact surfaces, threatening reliability. This study analyzes the fretting wear of multi-tooth contact surfaces through experiments and simulations. The experimental results show a progressive wear phenomenon, where the closer the contact surface is to the root of the blade, the less the wear depth. Furthermore, an energy model was constructed and validated to investigate the effects of mean load, stress ratios, and friction coefficient, revealing that relative slip dominates the fretting wear mechanism of different contact surfaces. A multi-tooth rigid displacement superposition model was proposed to illustrate the progressive wear phenomenon of fir-tree joints.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"207 ","pages":"Article 110631"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X25001264","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Under extreme load conditions of aircraft engines, the multi-tooth structure of the fir-tree joint can improve power output, but it also causes uneven fretting wear between contact surfaces, threatening reliability. This study analyzes the fretting wear of multi-tooth contact surfaces through experiments and simulations. The experimental results show a progressive wear phenomenon, where the closer the contact surface is to the root of the blade, the less the wear depth. Furthermore, an energy model was constructed and validated to investigate the effects of mean load, stress ratios, and friction coefficient, revealing that relative slip dominates the fretting wear mechanism of different contact surfaces. A multi-tooth rigid displacement superposition model was proposed to illustrate the progressive wear phenomenon of fir-tree joints.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.