Spectroscopic, quantum computational investigation, light harvesting effect, In silco biological evaluations and molecular docking of novel pyrazole derivative - A potential anti-cancer agent

IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
P. Manikandan , M. Kumar , S. Kaleeswaran , S. Chithra , P. Swarnamughi , Mohammad Nikpassand , Jayavelu Udaya Prakash
{"title":"Spectroscopic, quantum computational investigation, light harvesting effect, In silco biological evaluations and molecular docking of novel pyrazole derivative - A potential anti-cancer agent","authors":"P. Manikandan ,&nbsp;M. Kumar ,&nbsp;S. Kaleeswaran ,&nbsp;S. Chithra ,&nbsp;P. Swarnamughi ,&nbsp;Mohammad Nikpassand ,&nbsp;Jayavelu Udaya Prakash","doi":"10.1016/j.jics.2025.101657","DOIUrl":null,"url":null,"abstract":"<div><div>The study's main objectives were to develop and synthesize hybrid pyrazole derivatives from 1,3-diphenyl-1H-pyrazole-4-carbaldehyde and assess their anticancer potential using molecular docking and DFT simulations. The DFT/B3LYP functional and 6-311+G (d, p) basis set were used to computationally describe the title chemical utilizing quantum mechanics method. Theoretical and experimental FT-IR studies were presented, and vibrational wavenumbers scaled. The research included a number of investigations, such as the examination of Frontier Molecular Orbital (FMO), the computation of the HOMO-LUMO energy gap, the Modeling of UV spectra using Time-Dependent Density Functional Theory (TD-DFT), and the assessment of Light Harvesting Efficiency (LHE). The properties of Natural Bond Orbital and Non-Linear Optical (NLO) were calculated. The title molecule's reactive sites were found using a multi-technical computational approach that included LOL for orbital distribution analysis, RDG analysis for examining non-covalent interactions and possible chemical reactivity hotspots, ELF for electron pairing and localization studies, charge transfer analysis for electron density shift examination, and MEP analysis for charge distribution mapping. Bioactivity evaluation indicated that the title molecule does conform to Lipinski's rule and is also quite good in terms of drug-likeness. Additionally, molecular docking investigations showed encouraging protein-ligand binding interactions, indicating that the substance has anticancer properties.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101657"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452225000925","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The study's main objectives were to develop and synthesize hybrid pyrazole derivatives from 1,3-diphenyl-1H-pyrazole-4-carbaldehyde and assess their anticancer potential using molecular docking and DFT simulations. The DFT/B3LYP functional and 6-311+G (d, p) basis set were used to computationally describe the title chemical utilizing quantum mechanics method. Theoretical and experimental FT-IR studies were presented, and vibrational wavenumbers scaled. The research included a number of investigations, such as the examination of Frontier Molecular Orbital (FMO), the computation of the HOMO-LUMO energy gap, the Modeling of UV spectra using Time-Dependent Density Functional Theory (TD-DFT), and the assessment of Light Harvesting Efficiency (LHE). The properties of Natural Bond Orbital and Non-Linear Optical (NLO) were calculated. The title molecule's reactive sites were found using a multi-technical computational approach that included LOL for orbital distribution analysis, RDG analysis for examining non-covalent interactions and possible chemical reactivity hotspots, ELF for electron pairing and localization studies, charge transfer analysis for electron density shift examination, and MEP analysis for charge distribution mapping. Bioactivity evaluation indicated that the title molecule does conform to Lipinski's rule and is also quite good in terms of drug-likeness. Additionally, molecular docking investigations showed encouraging protein-ligand binding interactions, indicating that the substance has anticancer properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
7.70%
发文量
492
审稿时长
3-8 weeks
期刊介绍: The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信