Pathway to achieve net-zero emission in healthcare sector based on the natural resource-based view theoretical lens: A hybrid DEMATEL-ISM-MICMAC approach
{"title":"Pathway to achieve net-zero emission in healthcare sector based on the natural resource-based view theoretical lens: A hybrid DEMATEL-ISM-MICMAC approach","authors":"Detcharat Sumrit","doi":"10.1016/j.clet.2025.100916","DOIUrl":null,"url":null,"abstract":"<div><div>The healthcare sector, a leading global contributor to carbon emissions, faces increasing pressure to adopt sustainable practices and meet net-zero emissions (NZE) targets. This study investigates pathways to achieving NZE in healthcare through an innovative framework grounded in the Natural Resource-Based View (NRBV) theory. Thirteen key determinant factors (DFs) critical to attaining NZE are identified and validated by healthcare experts. To better understand the interrelationships and hierarchical structure of these factors in the complex NZE transition, the study integrates three methodologies: DEMATEL (Decision Making Trial and Evaluation Laboratory), ISM (Interpretive Structural Modeling), and MICMAC (Matriced Impacts Croises-Multiplication Applique et Classement). The findings reveal that “stakeholder engagement”, “green procurement”, and “telemedicine and remote monitoring” are the most influential DFs. Furthermore, the study offers actionable insights for both scholars and practitioners, providing a clear pathway and roadmap for achieving NZE in healthcare, which includes the following key hierarchical relationships: “EMS” → “ESG”, “stakeholder engagement” → “green procurement” → “end-of-life management”, “climate resilience planning” → “environmental training and education” → “medical equipment efficiency”, “telemedicine and remote monitoring”, “waste management practices” → “eco-design principles”, “suppliers sustainability” → “carbon labeling”. The framework developed in this study is highly adaptable, offering valuable potential for application across a variety of industries, thereby presenting significant opportunities to achieve NZE across multiple sectors.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"25 ","pages":"Article 100916"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790825000394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The healthcare sector, a leading global contributor to carbon emissions, faces increasing pressure to adopt sustainable practices and meet net-zero emissions (NZE) targets. This study investigates pathways to achieving NZE in healthcare through an innovative framework grounded in the Natural Resource-Based View (NRBV) theory. Thirteen key determinant factors (DFs) critical to attaining NZE are identified and validated by healthcare experts. To better understand the interrelationships and hierarchical structure of these factors in the complex NZE transition, the study integrates three methodologies: DEMATEL (Decision Making Trial and Evaluation Laboratory), ISM (Interpretive Structural Modeling), and MICMAC (Matriced Impacts Croises-Multiplication Applique et Classement). The findings reveal that “stakeholder engagement”, “green procurement”, and “telemedicine and remote monitoring” are the most influential DFs. Furthermore, the study offers actionable insights for both scholars and practitioners, providing a clear pathway and roadmap for achieving NZE in healthcare, which includes the following key hierarchical relationships: “EMS” → “ESG”, “stakeholder engagement” → “green procurement” → “end-of-life management”, “climate resilience planning” → “environmental training and education” → “medical equipment efficiency”, “telemedicine and remote monitoring”, “waste management practices” → “eco-design principles”, “suppliers sustainability” → “carbon labeling”. The framework developed in this study is highly adaptable, offering valuable potential for application across a variety of industries, thereby presenting significant opportunities to achieve NZE across multiple sectors.