YGC-SLAM:A visual SLAM based on improved YOLOv5 and geometric constraints for dynamic indoor environments

Q1 Computer Science
Juncheng ZHANG , Fuyang KE , Qinqin TANG , Wenming YU , Ming ZHANG
{"title":"YGC-SLAM:A visual SLAM based on improved YOLOv5 and geometric constraints for dynamic indoor environments","authors":"Juncheng ZHANG ,&nbsp;Fuyang KE ,&nbsp;Qinqin TANG ,&nbsp;Wenming YU ,&nbsp;Ming ZHANG","doi":"10.1016/j.vrih.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>As visual simultaneous localization and mapping (SLAM) is primarily based on the assumption of a static scene, the presence of dynamic objects in the frame causes problems such as a deterioration of system robustness and inaccurate position estimation. In this study, we propose a YGC-SLAM for indoor dynamic environments based on the ORB-SLAM2 framework combined with semantic and geometric constraints to improve the positioning accuracy and robustness of the system.</div></div><div><h3>Methods</h3><div>First, the recognition accuracy of YOLOv5 was improved by introducing the convolution block attention model and the improved EIOU loss function, whereby the prediction frame converges quickly for better detection. The improved YOLOv5 was then added to the tracking thread for dynamic target detection to eliminate dynamic points. Subsequently, multi-view geometric constraints were used for re-judging to further eliminate dynamic points while enabling more useful feature points to be retained and preventing the semantic approach from over-eliminating feature points, causing a failure of map building. The K-means clustering algorithm was used to accelerate this process and quickly calculate and determine the motion state of each cluster of pixel points. Finally, a strategy for drawing keyframes with de-redundancy was implemented to construct a clear 3D dense static point-cloud map.</div></div><div><h3>Results</h3><div>Through testing on TUM dataset and a real environment, the experimental results show that our algorithm reduces the absolute trajectory error by 98.22% and the relative trajectory error by 97.98% compared with the original ORB-SLAM2, which is more accurate and has better real-time performance than similar algorithms, such as DynaSLAM and DS-SLAM.</div></div><div><h3>Conclusions</h3><div>The YGC-SLAM proposed in this study can effectively eliminate the adverse effects of dynamic objects, and the system can better complete positioning and map building tasks in complex environments.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"7 1","pages":"Pages 62-82"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579624000214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Background

As visual simultaneous localization and mapping (SLAM) is primarily based on the assumption of a static scene, the presence of dynamic objects in the frame causes problems such as a deterioration of system robustness and inaccurate position estimation. In this study, we propose a YGC-SLAM for indoor dynamic environments based on the ORB-SLAM2 framework combined with semantic and geometric constraints to improve the positioning accuracy and robustness of the system.

Methods

First, the recognition accuracy of YOLOv5 was improved by introducing the convolution block attention model and the improved EIOU loss function, whereby the prediction frame converges quickly for better detection. The improved YOLOv5 was then added to the tracking thread for dynamic target detection to eliminate dynamic points. Subsequently, multi-view geometric constraints were used for re-judging to further eliminate dynamic points while enabling more useful feature points to be retained and preventing the semantic approach from over-eliminating feature points, causing a failure of map building. The K-means clustering algorithm was used to accelerate this process and quickly calculate and determine the motion state of each cluster of pixel points. Finally, a strategy for drawing keyframes with de-redundancy was implemented to construct a clear 3D dense static point-cloud map.

Results

Through testing on TUM dataset and a real environment, the experimental results show that our algorithm reduces the absolute trajectory error by 98.22% and the relative trajectory error by 97.98% compared with the original ORB-SLAM2, which is more accurate and has better real-time performance than similar algorithms, such as DynaSLAM and DS-SLAM.

Conclusions

The YGC-SLAM proposed in this study can effectively eliminate the adverse effects of dynamic objects, and the system can better complete positioning and map building tasks in complex environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信