A note on the categorical resolution of an effective Cartier divisor

IF 0.8 2区 数学 Q2 MATHEMATICS
Yu Zhao
{"title":"A note on the categorical resolution of an effective Cartier divisor","authors":"Yu Zhao","doi":"10.1016/j.jalgebra.2025.01.025","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>Y</em> be an effective Cartier divisor of a smooth variety <em>Z</em>. Let <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>, be a set of pairwise disjoint smooth subvarieties in <em>Y</em> such that their union contains the singular locus of <em>Y</em>. This paper provides a sufficient condition for <span><math><mi>B</mi><msub><mrow><mi>l</mi></mrow><mrow><mi>X</mi></mrow></msub><mi>Y</mi></math></span> to be smooth, where <em>X</em> is the disjoint union of all <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. Moreover, we prove that assuming a dimensional condition, there is an admissible subcategory of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>B</mi><msub><mrow><mi>l</mi></mrow><mrow><mi>X</mi></mrow></msub><mi>Y</mi><mo>)</mo></math></span> which is a weak categorical crepant resolution of <em>Y</em>, in the sense of Kuznetsov <span><span>[2]</span></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"672 ","pages":"Pages 1-9"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325000808","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Y be an effective Cartier divisor of a smooth variety Z. Let Xi, i{1,,n}, be a set of pairwise disjoint smooth subvarieties in Y such that their union contains the singular locus of Y. This paper provides a sufficient condition for BlXY to be smooth, where X is the disjoint union of all Xi. Moreover, we prove that assuming a dimensional condition, there is an admissible subcategory of Db(BlXY) which is a weak categorical crepant resolution of Y, in the sense of Kuznetsov [2].
关于有效卡地亚除数的绝对分辨的注释
设Y是光滑变种z的有效Cartier除数。设Xi, i∈{1,⋯,n}是Y中一对不相交的光滑子变种的集合,使得它们的并包含Y的奇异轨迹。本文提供了BlXY光滑的一个充分条件,其中X是所有Xi的不相交并。此外,我们证明了在一定的量纲条件下,在库兹涅佐夫[2]意义上,Db(BlXY)存在一个可容许的子范畴,它是Y的弱范畴渐进分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信