A study of ex-situ carbon mineralization under low intensity aqueous reaction

Adam Sjolund , Olivia Andrea Wrenn , Amy Tattershall , Thomas Sasser , Lisa A. Thompson , Jennifer Wade
{"title":"A study of ex-situ carbon mineralization under low intensity aqueous reaction","authors":"Adam Sjolund ,&nbsp;Olivia Andrea Wrenn ,&nbsp;Amy Tattershall ,&nbsp;Thomas Sasser ,&nbsp;Lisa A. Thompson ,&nbsp;Jennifer Wade","doi":"10.1016/j.ccst.2025.100391","DOIUrl":null,"url":null,"abstract":"<div><div>Safe, scalable and permanent options for carbon dioxide storage is essential to achieve net negative greenhouse gas emissions and limit catastrophic global warming. A benign and thermodynamically stable form of CO<sub>2</sub> storage is a carbonate mineral. This work examined ex situ carbon mineralization of magnesium rich ultramafic and mafic rocks under previously unstudied low intensity aqueous reaction conditions (<em>T</em> = 25 °C, PCO<sub>2</sub> = 80 kPa, pH = 7). Carbonate reaction extents, dissolved metals and formed carbonate phases were evaluated in experiments ranging from days to months using thermogravimetric and evolved gas analysis, dissolved elemental analysis, BET surface area, and semi-quantitative powder x-ray diffraction methods. Reaction kinetics were similar across both mineral types, with 12 % reaction extent achieved in under ten weeks. After 160 days of low intensity reaction, the ultramafic xenolith trapped 9 ± 2 wt% CO<sub>2</sub>. After 64 days of reaction, a scoriaceous picrite basalt trapped 7 ± 3 wt% CO<sub>2.</sub> Primarily amorphous magnesium carbonate was formed, with partial conversion to magnesite upon oven drying. The CO<sub>2</sub> mineralization of abundant surface rocks under mild conditions offer potential for alternative mineralization strategies for permanent negative CO<sub>2</sub> emissions.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100391"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Safe, scalable and permanent options for carbon dioxide storage is essential to achieve net negative greenhouse gas emissions and limit catastrophic global warming. A benign and thermodynamically stable form of CO2 storage is a carbonate mineral. This work examined ex situ carbon mineralization of magnesium rich ultramafic and mafic rocks under previously unstudied low intensity aqueous reaction conditions (T = 25 °C, PCO2 = 80 kPa, pH = 7). Carbonate reaction extents, dissolved metals and formed carbonate phases were evaluated in experiments ranging from days to months using thermogravimetric and evolved gas analysis, dissolved elemental analysis, BET surface area, and semi-quantitative powder x-ray diffraction methods. Reaction kinetics were similar across both mineral types, with 12 % reaction extent achieved in under ten weeks. After 160 days of low intensity reaction, the ultramafic xenolith trapped 9 ± 2 wt% CO2. After 64 days of reaction, a scoriaceous picrite basalt trapped 7 ± 3 wt% CO2. Primarily amorphous magnesium carbonate was formed, with partial conversion to magnesite upon oven drying. The CO2 mineralization of abundant surface rocks under mild conditions offer potential for alternative mineralization strategies for permanent negative CO2 emissions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信