Controls on metal distributions of the Fengzishan Zn–Pb deposit at the giant Jinding ore field in western Yunnan Province, SW China: Insights from field mapping and 3D geological modeling

IF 3.2 2区 地球科学 Q1 GEOLOGY
JingKun Liu , ChuanDong Xue , Wei Wang , LiPeng Xue , Rehana Ghazi
{"title":"Controls on metal distributions of the Fengzishan Zn–Pb deposit at the giant Jinding ore field in western Yunnan Province, SW China: Insights from field mapping and 3D geological modeling","authors":"JingKun Liu ,&nbsp;ChuanDong Xue ,&nbsp;Wei Wang ,&nbsp;LiPeng Xue ,&nbsp;Rehana Ghazi","doi":"10.1016/j.oregeorev.2025.106509","DOIUrl":null,"url":null,"abstract":"<div><div>The world class Jinding Zn–Pb ore field, located in the Meso–Cenozoic Lanping Basin in western Yunnan Province, SW China, contains significant deposits that are primarily controlled by stratigraphy and structure. However, the migration pathways and driving mechanisms of ore-forming fluids are poorly understood, which limit the minerals exploration. Based on typical orebodies in the Fengzishan Zn–Pb deposit, this study used field mapping and three-dimensional (3D) geological modeling to depict the metal distribution and identify key ore-controlling structures. The results show that lead, zinc, and other base metals are concentrated in the hosting sandstones and breccia limestones of the Upper Triassic Sanhedong Formation. These rocks are located beneath the unconformity with the Miocene Jinding Group and within the hanging walls of NS-trending thrust faults and EW-trending tear faults. Oxidized metal-rich brines from the Jinding Group and reduced H<sub>2</sub>S-rich fluids from the Sanhedong Formation migrate along the thrust and tear faults. Elevated Pb, Zn, Cd, and Ag concentrations and low Zn/Pb ratios were observed, suggesting multiple ore-forming fluid recharge events. We propose the following key suggestions: the spatial distributions of metals are controlled by the Jinding Group, the Sanhedong Formation, the unconformity between them, and the thrust and tear faults; the two-source fluids exhibit lateral and vertical flow through fault zones; and this migration is primarily driven by regional EW-trending compressive stresses. Based on regional geological data, the depths and adjacent areas of the Fengzishan and Nanchang deposits were identified as potential exploration targets for mineralization. These insights provide valuable perspectives for understanding the ore-forming processes of Jinding Zn–Pb ore field and similar regions.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"179 ","pages":"Article 106509"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136825000691","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The world class Jinding Zn–Pb ore field, located in the Meso–Cenozoic Lanping Basin in western Yunnan Province, SW China, contains significant deposits that are primarily controlled by stratigraphy and structure. However, the migration pathways and driving mechanisms of ore-forming fluids are poorly understood, which limit the minerals exploration. Based on typical orebodies in the Fengzishan Zn–Pb deposit, this study used field mapping and three-dimensional (3D) geological modeling to depict the metal distribution and identify key ore-controlling structures. The results show that lead, zinc, and other base metals are concentrated in the hosting sandstones and breccia limestones of the Upper Triassic Sanhedong Formation. These rocks are located beneath the unconformity with the Miocene Jinding Group and within the hanging walls of NS-trending thrust faults and EW-trending tear faults. Oxidized metal-rich brines from the Jinding Group and reduced H2S-rich fluids from the Sanhedong Formation migrate along the thrust and tear faults. Elevated Pb, Zn, Cd, and Ag concentrations and low Zn/Pb ratios were observed, suggesting multiple ore-forming fluid recharge events. We propose the following key suggestions: the spatial distributions of metals are controlled by the Jinding Group, the Sanhedong Formation, the unconformity between them, and the thrust and tear faults; the two-source fluids exhibit lateral and vertical flow through fault zones; and this migration is primarily driven by regional EW-trending compressive stresses. Based on regional geological data, the depths and adjacent areas of the Fengzishan and Nanchang deposits were identified as potential exploration targets for mineralization. These insights provide valuable perspectives for understanding the ore-forming processes of Jinding Zn–Pb ore field and similar regions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ore Geology Reviews
Ore Geology Reviews 地学-地质学
CiteScore
6.50
自引率
27.30%
发文量
546
审稿时长
22.9 weeks
期刊介绍: Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信