Nicholas J. Corrente , Shivam Parashar , Raleigh Gough , Elizabeth L. Hinks , Peter I. Ravikovitch , Alexander V. Neimark
{"title":"Modeling Structural Flexibility in 3D Carbon Models: A Hybrid MC/MD Approach to Adsorption-Induced Deformation","authors":"Nicholas J. Corrente , Shivam Parashar , Raleigh Gough , Elizabeth L. Hinks , Peter I. Ravikovitch , Alexander V. Neimark","doi":"10.1016/j.carbon.2025.120160","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting adsorption-induced deformation in nanoporous carbons is crucial for applications ranging from gas separations and energy storage to carbon capture and enhanced natural gas recovery, where structural changes can significantly impact material performance and process efficiency. The interplay between adsorption and material deformation presents both challenges and opportunities, particularly for CO<sub>2</sub>-CH<sub>4</sub> displacement processes in geological structures where matrix swelling can alter reservoir permeability. We investigate adsorption-induced deformation of nanoporous carbons using an original hybrid Monte Carlo/Molecular Dynamics (MC/MD) simulation approach that couples adsorption sampling with structural relaxation. By studying CH<sub>4</sub> and CO<sub>2</sub> adsorption on 3D carbon structures of varying densities (0.5-1.0 g/cm<sup>3</sup>), we demonstrate characteristic non-monotonic deformation behavior, with initial contraction at low pressures followed by expansion at higher pressures. A key contribution is the direct calculation of isothermal compressibility of adsorbate saturated porous structures from the volume fluctuations during NPT-MD simulations, which reveals dramatic mechanical property changes during adsorption. In the process of adsorption, carbon structures exhibit initial softening followed by substantial hardening, with a dramatic increase of the volumetric modulus in denser carbons. Using elastic theory relationships, we estimate the adsorption stresses reaching 175 MPa, that provides crucial insights into potential material degradation mechanisms. For binary CH<sub>4</sub>/CO<sub>2</sub> mixtures, increasing CO<sub>2</sub> content amplifies both contraction and expansion effects due to stronger fluid-wall interactions. The iterative MC/MD methodology enables direct observation of the structural evolution and quantitative estimates of the mechanical properties, which are difficult to measure experimentally, advancing our understanding of coupled adsorption-deformation processes in nanoporous materials.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"238 ","pages":"Article 120160"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325001769","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting adsorption-induced deformation in nanoporous carbons is crucial for applications ranging from gas separations and energy storage to carbon capture and enhanced natural gas recovery, where structural changes can significantly impact material performance and process efficiency. The interplay between adsorption and material deformation presents both challenges and opportunities, particularly for CO2-CH4 displacement processes in geological structures where matrix swelling can alter reservoir permeability. We investigate adsorption-induced deformation of nanoporous carbons using an original hybrid Monte Carlo/Molecular Dynamics (MC/MD) simulation approach that couples adsorption sampling with structural relaxation. By studying CH4 and CO2 adsorption on 3D carbon structures of varying densities (0.5-1.0 g/cm3), we demonstrate characteristic non-monotonic deformation behavior, with initial contraction at low pressures followed by expansion at higher pressures. A key contribution is the direct calculation of isothermal compressibility of adsorbate saturated porous structures from the volume fluctuations during NPT-MD simulations, which reveals dramatic mechanical property changes during adsorption. In the process of adsorption, carbon structures exhibit initial softening followed by substantial hardening, with a dramatic increase of the volumetric modulus in denser carbons. Using elastic theory relationships, we estimate the adsorption stresses reaching 175 MPa, that provides crucial insights into potential material degradation mechanisms. For binary CH4/CO2 mixtures, increasing CO2 content amplifies both contraction and expansion effects due to stronger fluid-wall interactions. The iterative MC/MD methodology enables direct observation of the structural evolution and quantitative estimates of the mechanical properties, which are difficult to measure experimentally, advancing our understanding of coupled adsorption-deformation processes in nanoporous materials.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.