Source-specific health risks of PM2.5-bound heavy metals in a Chinese megacity impacted by non-ferrous metal mines

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yanhong Zhu , Qiwu Li , Jian Wu , Xin Chen , Junfeng Zhang
{"title":"Source-specific health risks of PM2.5-bound heavy metals in a Chinese megacity impacted by non-ferrous metal mines","authors":"Yanhong Zhu ,&nbsp;Qiwu Li ,&nbsp;Jian Wu ,&nbsp;Xin Chen ,&nbsp;Junfeng Zhang","doi":"10.1016/j.apr.2025.102485","DOIUrl":null,"url":null,"abstract":"<div><div>Non-ferrous metal mining and smelting are considered to be one of the largest sources of heavy metals (HMs) to the atmosphere, posing a serious threat to human health. For this reason, this study addressed the potential impacts in a Chinese megacity affected by non-ferrous metal mines, and explored the characteristics and health risks of HMs in PM<sub>2.5</sub> during summer, autumn, and winter from June 2019 to January 2020. The results showed that the average PM<sub>2.5</sub> concentration and total concentration of 10 associated HMs increased from 25.5 to 48.5 μg m<sup>−3</sup> and from 51.5 to 133 ng m<sup>−3</sup>, respectively, from summer to winter. Combining methods for health risk assessment of elements and sources, we found that the total carcinogenic risk (CR) of six carcinogenic HMs (As, Cr, Co, Cd, Ni, and Pb) also exhibited a clear increasing trend from summer to winter. However, the total CR (1.12 × 10<sup>−5</sup>) in summer still exceeded the minimum acceptable risk level. The main contributors to CR in each of the three seasons were consistently industrial emissions and coal combustion, with their combined contributions exceeding 82.5%. Further analysis indicated that in all three seasons, the CR of industrial emissions mainly resulted from Cr, Co, and Cd, while the CR of coal combustion was primarily due to As, highlighting the significant challenges of controlling Cr-, Co-, and Cd-related industries and As emissions from combustion in areas affected by non-ferrous metal mines in the future.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 6","pages":"Article 102485"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S130910422500087X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Non-ferrous metal mining and smelting are considered to be one of the largest sources of heavy metals (HMs) to the atmosphere, posing a serious threat to human health. For this reason, this study addressed the potential impacts in a Chinese megacity affected by non-ferrous metal mines, and explored the characteristics and health risks of HMs in PM2.5 during summer, autumn, and winter from June 2019 to January 2020. The results showed that the average PM2.5 concentration and total concentration of 10 associated HMs increased from 25.5 to 48.5 μg m−3 and from 51.5 to 133 ng m−3, respectively, from summer to winter. Combining methods for health risk assessment of elements and sources, we found that the total carcinogenic risk (CR) of six carcinogenic HMs (As, Cr, Co, Cd, Ni, and Pb) also exhibited a clear increasing trend from summer to winter. However, the total CR (1.12 × 10−5) in summer still exceeded the minimum acceptable risk level. The main contributors to CR in each of the three seasons were consistently industrial emissions and coal combustion, with their combined contributions exceeding 82.5%. Further analysis indicated that in all three seasons, the CR of industrial emissions mainly resulted from Cr, Co, and Cd, while the CR of coal combustion was primarily due to As, highlighting the significant challenges of controlling Cr-, Co-, and Cd-related industries and As emissions from combustion in areas affected by non-ferrous metal mines in the future.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信