Artemisinin regulates cell proliferation, apoptosis, and the inflammatory response of human dental pulp stem cells through the p53 signaling pathway under LPS-induced inflammation
Yuan Sui , Xiaofei Dong , Enkang Tong , Cuicui Zhao , Rongrong Nie , Xiangfeng Meng
{"title":"Artemisinin regulates cell proliferation, apoptosis, and the inflammatory response of human dental pulp stem cells through the p53 signaling pathway under LPS-induced inflammation","authors":"Yuan Sui , Xiaofei Dong , Enkang Tong , Cuicui Zhao , Rongrong Nie , Xiangfeng Meng","doi":"10.1016/j.intimp.2025.114396","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>The purpose of this study was to investigate the effects and mechanism of artemisinin (ART) on the proliferation, apoptosis, and inflammatory response of human dental pulp stem cells (HDPSCs) under lipopolysaccharide (LPS)-induced inflammation.</div></div><div><h3>Methods</h3><div>HDPSCs were isolated, cultured, and identified by flow cytometry and three-directional differentiation induction. A suitable concentration of LPS was selected to mimic the inflammatory condition in vitro. After culturing with ART and LPS for 48 h, cell proliferation was observed by CCK-8 assay; cell apoptosis was observed by flow cytometry, western blot, and Caspase-3 activity; and the inflammatory response was observed by qRT-PCR and ELISA. Transcriptome sequencing, immunofluorescence staining, qRT-PCR, western blot, and RITA were used to explore the underlying mechanism.</div></div><div><h3>Results</h3><div>HDPSCs were successfully isolated and exhibited the potential for multilineage differentiation. 0.1 μg/mL of LPS was utilized to mimic the inflammatory condition. ART promoted HDPSCs proliferation but repressed apoptosis and the inflammatory response under LPS-induced inflammation. Further, ART exerted its effect through the p53 signaling pathway.</div></div><div><h3>Conclusion</h3><div>ART inhibited the p53 signaling pathway to promote HDPSCs proliferation, but hinder apoptosis and the inflammatory response under LPS-induced inflammation.</div></div><div><h3>Clinical significance</h3><div>This study demonstrates that ART facilitates the alleviation of inflammation and preserves the viability of HDPSCs. Therefore, ART may serve as a promising therapeutic drug for the repair and regeneration of dental pulp in the treatment of deep caries and reversible pulpitis.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"152 ","pages":"Article 114396"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925003868","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
The purpose of this study was to investigate the effects and mechanism of artemisinin (ART) on the proliferation, apoptosis, and inflammatory response of human dental pulp stem cells (HDPSCs) under lipopolysaccharide (LPS)-induced inflammation.
Methods
HDPSCs were isolated, cultured, and identified by flow cytometry and three-directional differentiation induction. A suitable concentration of LPS was selected to mimic the inflammatory condition in vitro. After culturing with ART and LPS for 48 h, cell proliferation was observed by CCK-8 assay; cell apoptosis was observed by flow cytometry, western blot, and Caspase-3 activity; and the inflammatory response was observed by qRT-PCR and ELISA. Transcriptome sequencing, immunofluorescence staining, qRT-PCR, western blot, and RITA were used to explore the underlying mechanism.
Results
HDPSCs were successfully isolated and exhibited the potential for multilineage differentiation. 0.1 μg/mL of LPS was utilized to mimic the inflammatory condition. ART promoted HDPSCs proliferation but repressed apoptosis and the inflammatory response under LPS-induced inflammation. Further, ART exerted its effect through the p53 signaling pathway.
Conclusion
ART inhibited the p53 signaling pathway to promote HDPSCs proliferation, but hinder apoptosis and the inflammatory response under LPS-induced inflammation.
Clinical significance
This study demonstrates that ART facilitates the alleviation of inflammation and preserves the viability of HDPSCs. Therefore, ART may serve as a promising therapeutic drug for the repair and regeneration of dental pulp in the treatment of deep caries and reversible pulpitis.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.