{"title":"Engineering CD3 subunits with endoplasmic reticulum retention signal facilitates allogeneic CAR T cell production","authors":"Hamidreza Ebrahimiyan , Ali Sayadmanesh , Mahdi Hesaraki , Marzieh Ebrahimi , Hossein Baharand , Mohsen Basiri","doi":"10.1016/j.intimp.2025.114412","DOIUrl":null,"url":null,"abstract":"<div><div>The success of autologous CAR T cell therapies has driven interest in developing off-the-shelf allogeneic CAR T cells as a scalable and readily available option for broader patient access. Most of the current approaches involve the knockout of T cell receptor (TCR) subunits via genome editing for preventing graft-versus-host disease (GvHD). However, clinical translation of these methods faces challenges due to manufacturing complexities and emerging safety concerns like unintended long deletions and chromosomal loss. In this study, we explored an alternative approach by engineering synthetic CD3 subunits containing an endoplasmic reticulum retention (ERR) signal to suppress TCR surface expression by disrupting its trafficking to the plasma membrane. We screened multiple CD3-ERR candidate designs to identify the construct with the highest efficacy in TCR downregulation. The selected candidate, CD3ζ-ERR, was further characterized, demonstrating its ability to minimize TCR-mediated activation and alloreactivity without affecting T cell phenotype, cell cycle and cytokine-induced expansion. Subsequent assays revealed that CD3ζ-ERR CD19 CAR T cells retained their CAR-mediated cytotoxic function against CD19<sup>+</sup> malignant cells. This study presents an alternative approach for TCR downregulation that circumvents genome editing. By using a transgene compatible with conventional viral vector delivery, this approach holds promise for scalable clinical-grade manufacturing of allogeneic CAR T cell therapies.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"152 ","pages":"Article 114412"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925004023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The success of autologous CAR T cell therapies has driven interest in developing off-the-shelf allogeneic CAR T cells as a scalable and readily available option for broader patient access. Most of the current approaches involve the knockout of T cell receptor (TCR) subunits via genome editing for preventing graft-versus-host disease (GvHD). However, clinical translation of these methods faces challenges due to manufacturing complexities and emerging safety concerns like unintended long deletions and chromosomal loss. In this study, we explored an alternative approach by engineering synthetic CD3 subunits containing an endoplasmic reticulum retention (ERR) signal to suppress TCR surface expression by disrupting its trafficking to the plasma membrane. We screened multiple CD3-ERR candidate designs to identify the construct with the highest efficacy in TCR downregulation. The selected candidate, CD3ζ-ERR, was further characterized, demonstrating its ability to minimize TCR-mediated activation and alloreactivity without affecting T cell phenotype, cell cycle and cytokine-induced expansion. Subsequent assays revealed that CD3ζ-ERR CD19 CAR T cells retained their CAR-mediated cytotoxic function against CD19+ malignant cells. This study presents an alternative approach for TCR downregulation that circumvents genome editing. By using a transgene compatible with conventional viral vector delivery, this approach holds promise for scalable clinical-grade manufacturing of allogeneic CAR T cell therapies.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.