Automatic 3D horizon picking using a volumetric transformer-based segmentation network

IF 2.2 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Xiaofang Liao , Junxing Cao , Feng Tan , Jachun You
{"title":"Automatic 3D horizon picking using a volumetric transformer-based segmentation network","authors":"Xiaofang Liao ,&nbsp;Junxing Cao ,&nbsp;Feng Tan ,&nbsp;Jachun You","doi":"10.1016/j.jappgeo.2025.105673","DOIUrl":null,"url":null,"abstract":"<div><div>Seismic horizon picking is a critical step in seismic interpretation and is often labor-intensive and time-consuming, particularly in three-dimensional (3D) volume interpretation. We formulated the task of automatically selecting horizon surfaces from 3D seismic data as a 3D seismic image segmentation problem and developed a method based on a volumetric transformer network. The network uses 3D seismic subvolumes as inputs and outputs the probabilities of several horizon classes. Horizon surfaces can be extracted using postprocessing segmentation probabilities. Because the full annotation of a 3D subvolume is tedious and time-consuming, we utilize a masked loss strategy that allows us to label a few two-dimensional (2D) slices per training subvolume such that the network can learn from partially labeled subvolumes and create dense volumetric segmentation. We also used data augmentation and transfer learning to improve the prediction accuracy with the limited availability of training data. For two public 3D seismic datasets, the proposed method yielded accurate results for 3D horizon picking, and the use of transfer learning improved the accuracy of the results.</div></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":"236 ","pages":"Article 105673"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985125000540","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic horizon picking is a critical step in seismic interpretation and is often labor-intensive and time-consuming, particularly in three-dimensional (3D) volume interpretation. We formulated the task of automatically selecting horizon surfaces from 3D seismic data as a 3D seismic image segmentation problem and developed a method based on a volumetric transformer network. The network uses 3D seismic subvolumes as inputs and outputs the probabilities of several horizon classes. Horizon surfaces can be extracted using postprocessing segmentation probabilities. Because the full annotation of a 3D subvolume is tedious and time-consuming, we utilize a masked loss strategy that allows us to label a few two-dimensional (2D) slices per training subvolume such that the network can learn from partially labeled subvolumes and create dense volumetric segmentation. We also used data augmentation and transfer learning to improve the prediction accuracy with the limited availability of training data. For two public 3D seismic datasets, the proposed method yielded accurate results for 3D horizon picking, and the use of transfer learning improved the accuracy of the results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Geophysics
Journal of Applied Geophysics 地学-地球科学综合
CiteScore
3.60
自引率
10.00%
发文量
274
审稿时长
4 months
期刊介绍: The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信