{"title":"Sets of vertices with extremal energy","authors":"Neal Bushaw, Brent Cody, Chris Leffler","doi":"10.1016/j.disc.2025.114466","DOIUrl":null,"url":null,"abstract":"<div><div>We define various notions of energy of a set of vertices in a graph, which generalize two of the most widely studied graphical indices: the Wiener index and the Harary index. We provide a new proof of a result due to Douthett and Krantz, which says that for cycles, the sets of vertices which have minimal energy among all sets of the same size are precisely the <em>maximally even sets</em>, as defined in Clough and Douthett's work on music theory. Generalizing a theorem of Clough and Douthett, we prove that a finite, simple, connected graph is distance degree regular if and only if whenever a set of vertices has minimal energy, its complement also has minimal energy. We also provide several characterizations of sets of vertices in finite paths and cycles for which the sum of all pairwise distances between vertices in the set is maximal among all sets of the same size.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114466"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000743","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We define various notions of energy of a set of vertices in a graph, which generalize two of the most widely studied graphical indices: the Wiener index and the Harary index. We provide a new proof of a result due to Douthett and Krantz, which says that for cycles, the sets of vertices which have minimal energy among all sets of the same size are precisely the maximally even sets, as defined in Clough and Douthett's work on music theory. Generalizing a theorem of Clough and Douthett, we prove that a finite, simple, connected graph is distance degree regular if and only if whenever a set of vertices has minimal energy, its complement also has minimal energy. We also provide several characterizations of sets of vertices in finite paths and cycles for which the sum of all pairwise distances between vertices in the set is maximal among all sets of the same size.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.