{"title":"Design of a low power LED driver with adjustable LDO","authors":"Binjie Shi , Zhenglin Li , Hao Fang , Jiadong Li","doi":"10.1016/j.mejo.2025.106622","DOIUrl":null,"url":null,"abstract":"<div><div>The issue of high power consumption in the standby state of the driver chip for conventional LED is addressed by proposing an adjustable LDO. This LDO optimizes the static power consumption current of the LED driver chip through a power management circuit. In standby mode, a portion of the LDO circuit and the driver chip display circuit are deactivated, effectively reducing the static power consumption current of the driver chip. The standby mode static power consumption current of the LED driver chip equipped with adjustable LDO is measured to be 46.82μA, while the static power consumption current of the LED driver chip without adjustable LDO amounts to 151.83μA. In standby mode, compared to the non-adjustable option, there is a reduction of 105μA in adjustable power consumption current, with a corresponding static power consumption of only 0.23 mW for the LED driver chip. The LED driver chip designed in this paper is realized using a 180 nm BCD process.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"159 ","pages":"Article 106622"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125000712","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The issue of high power consumption in the standby state of the driver chip for conventional LED is addressed by proposing an adjustable LDO. This LDO optimizes the static power consumption current of the LED driver chip through a power management circuit. In standby mode, a portion of the LDO circuit and the driver chip display circuit are deactivated, effectively reducing the static power consumption current of the driver chip. The standby mode static power consumption current of the LED driver chip equipped with adjustable LDO is measured to be 46.82μA, while the static power consumption current of the LED driver chip without adjustable LDO amounts to 151.83μA. In standby mode, compared to the non-adjustable option, there is a reduction of 105μA in adjustable power consumption current, with a corresponding static power consumption of only 0.23 mW for the LED driver chip. The LED driver chip designed in this paper is realized using a 180 nm BCD process.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.