Comparative studies of specific capacitance in different electrolytes of two Ru(II)-metallopolymers synthesized using positional isomeric ligands

IF 4.5 3区 工程技术 Q1 CHEMISTRY, APPLIED
Shubham Bawa, Samaresh Ghosh, Anil Kumar, Anasuya Bandyopadhyay
{"title":"Comparative studies of specific capacitance in different electrolytes of two Ru(II)-metallopolymers synthesized using positional isomeric ligands","authors":"Shubham Bawa,&nbsp;Samaresh Ghosh,&nbsp;Anil Kumar,&nbsp;Anasuya Bandyopadhyay","doi":"10.1016/j.reactfunctpolym.2025.106246","DOIUrl":null,"url":null,"abstract":"<div><div>Metallopolymers are hybrid materials made from both organic and inorganic components, with adjustable properties that make them great for advanced uses. This study focuses on the synthesis and characterization of Ru(II)-metallopolymers using positionally isomeric ditopic ligands with multiple binding sites, enabling stable metal-ligand complexes and the growth of linear polymer chains. Analytical techniques such as ATR-IR, NMR, UV–Vis, and electrochemical methods were employed to assess their structural, electronic, and redox properties. A detailed investigation of specific capacitance in various electrolytes revealed capacitance values of 131 Fg<sup>−1</sup> in 1 M H<sub>2</sub>SO<sub>4</sub> for Ru(II)-L<sub>1</sub> Poly and 130 Fg<sup>−1</sup> in LiClO<sub>4</sub> for Ru(II)-L<sub>2</sub> Poly, with robust cyclic stability retaining 98 % of initial capacitance after 8000 cycles. These metallopolymers offer superior compatibility and flexibility with organic conjugated polymers, making them ideal for making hybrid energy storage devices. Their excellent retention and stability underscore their potential as redox additives in supercapacitors. This work not only addresses gaps in energy storage research but also highlights the adaptability of Ru(II)-metallopolymers in developing high-performance, electrochemical materials for advanced energy technologies.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"212 ","pages":"Article 106246"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514825000987","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Metallopolymers are hybrid materials made from both organic and inorganic components, with adjustable properties that make them great for advanced uses. This study focuses on the synthesis and characterization of Ru(II)-metallopolymers using positionally isomeric ditopic ligands with multiple binding sites, enabling stable metal-ligand complexes and the growth of linear polymer chains. Analytical techniques such as ATR-IR, NMR, UV–Vis, and electrochemical methods were employed to assess their structural, electronic, and redox properties. A detailed investigation of specific capacitance in various electrolytes revealed capacitance values of 131 Fg−1 in 1 M H2SO4 for Ru(II)-L1 Poly and 130 Fg−1 in LiClO4 for Ru(II)-L2 Poly, with robust cyclic stability retaining 98 % of initial capacitance after 8000 cycles. These metallopolymers offer superior compatibility and flexibility with organic conjugated polymers, making them ideal for making hybrid energy storage devices. Their excellent retention and stability underscore their potential as redox additives in supercapacitors. This work not only addresses gaps in energy storage research but also highlights the adaptability of Ru(II)-metallopolymers in developing high-performance, electrochemical materials for advanced energy technologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Reactive & Functional Polymers
Reactive & Functional Polymers 工程技术-高分子科学
CiteScore
8.90
自引率
5.90%
发文量
259
审稿时长
27 days
期刊介绍: Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers. Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信