Integrated stress and strain characterisation of the Himalayan-Tibetan collision zone using earthquake and geodetic data

IF 2.7 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
R. Abhirami, P.S. Sunil, A. Sooraj, S.S. Sreerag, A.S. Sunil
{"title":"Integrated stress and strain characterisation of the Himalayan-Tibetan collision zone using earthquake and geodetic data","authors":"R. Abhirami,&nbsp;P.S. Sunil,&nbsp;A. Sooraj,&nbsp;S.S. Sreerag,&nbsp;A.S. Sunil","doi":"10.1016/j.tecto.2025.230686","DOIUrl":null,"url":null,"abstract":"<div><div>The Himalayan-Tibetan Collision Zone (HTCZ) is one of the most geodynamically active regions on Earth, shaped by the continuous collision between the Indian and Eurasian plates. This study analyzes the prevailing crustal stress and deformation patterns across the HTCZ by integrating earthquake focal mechanism solutions (FMS) with velocity data from the geodetic Global Navigation Satellite System (GNSS). Inversion of FMS data, using iterative and damped methods, reveals a dominant N-S oriented compressional stress with low-angle plunges along the Himalayan Arc. In contrast, the Tibetan Plateau exhibits a combination of strike-slip and normal faulting with WNW-ESE stress orientations. To better understand deformation pattern, GNSS-derived velocity data were inverted using a modified weighted least-squares approach to estimate regional strain rates. The resulting dilatation strain rate map too highlights the significant crustal shortening along the Himalayan Arc, while the Tibetan Plateau displays extension. However, the maximum shear strain rates are primarily attributable to strike-slip faulting in Tibetan region. Additionally, the second invariant strain rate map indicates the highest deformation concentrations in the central Himalaya and the eastern Himalayan syntaxis. The maximum horizontal compressive stress orientations (SH<sub>max</sub>) derived from FMS closely align with the maximum horizontal shortening strain-rate orientations (εH<sub>max</sub>) inferred from GNSS velocities. The strong correlation between SH<sub>max</sub> and εH<sub>max</sub> within the 75°E to 95°E longitude suggests the high elasticity of the central segment of HTCZ. However, the noticeable clockwise rotation of SH<sub>max</sub> and εH<sub>max</sub> over the eastern segment underscores the presence of a viscous lithosphere beneath the Tibetan Plateau. These findings provide valuable insights into the Himalayan stress-strain regime and enhance our understanding of crustal deformation processes in this highly dynamic tectonic zone.</div></div>","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":"902 ","pages":"Article 230686"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040195125000721","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Himalayan-Tibetan Collision Zone (HTCZ) is one of the most geodynamically active regions on Earth, shaped by the continuous collision between the Indian and Eurasian plates. This study analyzes the prevailing crustal stress and deformation patterns across the HTCZ by integrating earthquake focal mechanism solutions (FMS) with velocity data from the geodetic Global Navigation Satellite System (GNSS). Inversion of FMS data, using iterative and damped methods, reveals a dominant N-S oriented compressional stress with low-angle plunges along the Himalayan Arc. In contrast, the Tibetan Plateau exhibits a combination of strike-slip and normal faulting with WNW-ESE stress orientations. To better understand deformation pattern, GNSS-derived velocity data were inverted using a modified weighted least-squares approach to estimate regional strain rates. The resulting dilatation strain rate map too highlights the significant crustal shortening along the Himalayan Arc, while the Tibetan Plateau displays extension. However, the maximum shear strain rates are primarily attributable to strike-slip faulting in Tibetan region. Additionally, the second invariant strain rate map indicates the highest deformation concentrations in the central Himalaya and the eastern Himalayan syntaxis. The maximum horizontal compressive stress orientations (SHmax) derived from FMS closely align with the maximum horizontal shortening strain-rate orientations (εHmax) inferred from GNSS velocities. The strong correlation between SHmax and εHmax within the 75°E to 95°E longitude suggests the high elasticity of the central segment of HTCZ. However, the noticeable clockwise rotation of SHmax and εHmax over the eastern segment underscores the presence of a viscous lithosphere beneath the Tibetan Plateau. These findings provide valuable insights into the Himalayan stress-strain regime and enhance our understanding of crustal deformation processes in this highly dynamic tectonic zone.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tectonophysics
Tectonophysics 地学-地球化学与地球物理
CiteScore
4.90
自引率
6.90%
发文量
300
审稿时长
6 months
期刊介绍: The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信