Fitri Yuliani , Syiffa Fauzia , Asep Saefumillah , Andreas Andreas , Dewangga Oky Bagus Apriandanu , Aminah Umar
{"title":"Synthesis and characterization of magnetic molecularly imprinted polymers for selective recognition of tocotrienols","authors":"Fitri Yuliani , Syiffa Fauzia , Asep Saefumillah , Andreas Andreas , Dewangga Oky Bagus Apriandanu , Aminah Umar","doi":"10.1016/j.vacuum.2025.114189","DOIUrl":null,"url":null,"abstract":"<div><div>This research examined the application of magnetic molecularly imprinted polymer (MMIP) for the recognition of tocotrienol. Batch adsorption experiments optimized contact time (2 h) and initial concentration (200 ppm). A magnetic non-imprinted polymer (MNIP) served as a control. The adsorption kinetics conformed to a pseudo-second-order model, and the Langmuir isotherm characterized the adsorption process. A positive Temkin isotherm constant indicated exothermic adsorption. Selectivity studies revealed a higher imprinting factor for MMIP, demonstrating preferential tocotrienol adsorption over tocopherol. Higher KD values and selectivity coefficients for tocotrienol confirmed this selectivity. The MMIP exhibited excellent reusability, maintaining approximately 94 % desorption efficiency over multiple cycles. Analysis of tocotrienols in crude and packaged palm oil showed significantly higher adsorption capacities for MMIP (0.0638 and 0.0329, respectively) compared to MNIP (0.0006 and 0.0001, respectively). These results highlight the potential of MMIP for selective tocotrienol separation and purification from natural sources.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"238 ","pages":"Article 114189"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X25001794","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This research examined the application of magnetic molecularly imprinted polymer (MMIP) for the recognition of tocotrienol. Batch adsorption experiments optimized contact time (2 h) and initial concentration (200 ppm). A magnetic non-imprinted polymer (MNIP) served as a control. The adsorption kinetics conformed to a pseudo-second-order model, and the Langmuir isotherm characterized the adsorption process. A positive Temkin isotherm constant indicated exothermic adsorption. Selectivity studies revealed a higher imprinting factor for MMIP, demonstrating preferential tocotrienol adsorption over tocopherol. Higher KD values and selectivity coefficients for tocotrienol confirmed this selectivity. The MMIP exhibited excellent reusability, maintaining approximately 94 % desorption efficiency over multiple cycles. Analysis of tocotrienols in crude and packaged palm oil showed significantly higher adsorption capacities for MMIP (0.0638 and 0.0329, respectively) compared to MNIP (0.0006 and 0.0001, respectively). These results highlight the potential of MMIP for selective tocotrienol separation and purification from natural sources.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.