The general Caputo–Katugampola fractional derivative and numerical approach for solving the fractional differential equations

IF 6.8 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Lakhlifa Sadek , Sahar Ahmed ldris , Fahd Jarad
{"title":"The general Caputo–Katugampola fractional derivative and numerical approach for solving the fractional differential equations","authors":"Lakhlifa Sadek ,&nbsp;Sahar Ahmed ldris ,&nbsp;Fahd Jarad","doi":"10.1016/j.aej.2025.02.065","DOIUrl":null,"url":null,"abstract":"<div><div>In this manuscript, we present the general fractional derivative (FD) along with its fractional integral (FI), specifically the <span><math><mi>ψ</mi></math></span>-Caputo–Katugampola fractional derivative (<span><math><mi>ψ</mi></math></span>-CKFD). The Caputo–Katugampola (CKFD), the Caputo (CFD), and the Caputo–Hadamard FD (CHFD) are all special cases of this new fractional derivative. We also introduce the <span><math><mi>ψ</mi></math></span>-Katugampola fractional integral (<span><math><mi>ψ</mi></math></span>-KFI) and discuss several related theorems. An existence and uniqueness theorem for a <span><math><mi>ψ</mi></math></span>-Caputo–Katugampola fractional Cauchy problem (<span><math><mi>ψ</mi></math></span>-CKFCP) is established. Furthermore, we present an adaptive predictor–corrector algorithm for solving the <span><math><mi>ψ</mi></math></span>-CKFCP. We include examples and applications to illustrate its effectiveness. The derivative used in our approach is significantly influenced by the parameters <span><math><mi>δ</mi></math></span>, <span><math><mi>γ</mi></math></span>, and the function <span><math><mi>ψ</mi></math></span>, which makes it a valuable tool for developing fractional calculus models.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"121 ","pages":"Pages 539-557"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825002431","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript, we present the general fractional derivative (FD) along with its fractional integral (FI), specifically the ψ-Caputo–Katugampola fractional derivative (ψ-CKFD). The Caputo–Katugampola (CKFD), the Caputo (CFD), and the Caputo–Hadamard FD (CHFD) are all special cases of this new fractional derivative. We also introduce the ψ-Katugampola fractional integral (ψ-KFI) and discuss several related theorems. An existence and uniqueness theorem for a ψ-Caputo–Katugampola fractional Cauchy problem (ψ-CKFCP) is established. Furthermore, we present an adaptive predictor–corrector algorithm for solving the ψ-CKFCP. We include examples and applications to illustrate its effectiveness. The derivative used in our approach is significantly influenced by the parameters δ, γ, and the function ψ, which makes it a valuable tool for developing fractional calculus models.
一般的Caputo-Katugampola分数阶导数及解分数阶微分方程的数值方法
在本文中,我们给出了一般分数阶导数(FD)及其分数积分(FI),特别是ψ-Caputo-Katugampola分数阶导数(ckfd)。Caputo - katugampola (CKFD)、Caputo (CFD)和Caputo - hadamard FD (CHFD)都是这种新型分数阶导数的特殊情况。同时引入了ψ-Katugampola分数积分(ψ-KFI)并讨论了相关定理。建立了一类ψ-Caputo-Katugampola分数阶柯西问题(ψ-CKFCP)的存在唯一性定理。此外,我们提出了一种求解ψ-CKFCP的自适应预测校正算法。我们通过实例和应用来说明其有效性。在我们的方法中使用的导数受到参数δ, γ和函数ψ的显著影响,这使得它成为开发分数阶微积分模型的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信