{"title":"Tumour-agnostic kinase inhibitors","authors":"Jacob J. Adashek, Mina Nikanjam, Razelle Kurzrock","doi":"10.1038/s41573-025-01147-y","DOIUrl":null,"url":null,"abstract":"<p>Protein kinases are crucial targets for cancer treatment as they orchestrate important signals for oncogenesis and are often aberrantly activated owing to genomic alterations. In the past two decades, multiple kinase inhibitors have been developed, including those that are clinically effective regardless of tumour location, provided that the tumour harbours the aberrantly activated kinase. Consequently, a biomarker-based therapy model, untethered from tumour histology and organ of origin, has been established, which has led to transformative regulatory approvals of tumour-agnostic kinase inhibitors such as larotrectinib, selpercatinib, dabrafenib–trametinib and pemigatinib. However, almost all such approvals are partial in nature, as they do not include both solid and haematological cancers, even if the kinase inhibitor has shown activity in both. Moreover, clinical trials to assess these compounds are challenging because genomic sequencing of hundreds or thousands of tumours may be required to find eligible patients whose malignancy bears the targeted genetic alterations. In this Review, we describe the precision medicine paradigm that has successfully launched tumour-agnostic drug development, concentrating on small-molecule inhibitors that target kinase pathway aberrations, and we discuss the challenges in developing tumour‐agnostic agents.</p>","PeriodicalId":18847,"journal":{"name":"Nature Reviews Drug Discovery","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Drug Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41573-025-01147-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Protein kinases are crucial targets for cancer treatment as they orchestrate important signals for oncogenesis and are often aberrantly activated owing to genomic alterations. In the past two decades, multiple kinase inhibitors have been developed, including those that are clinically effective regardless of tumour location, provided that the tumour harbours the aberrantly activated kinase. Consequently, a biomarker-based therapy model, untethered from tumour histology and organ of origin, has been established, which has led to transformative regulatory approvals of tumour-agnostic kinase inhibitors such as larotrectinib, selpercatinib, dabrafenib–trametinib and pemigatinib. However, almost all such approvals are partial in nature, as they do not include both solid and haematological cancers, even if the kinase inhibitor has shown activity in both. Moreover, clinical trials to assess these compounds are challenging because genomic sequencing of hundreds or thousands of tumours may be required to find eligible patients whose malignancy bears the targeted genetic alterations. In this Review, we describe the precision medicine paradigm that has successfully launched tumour-agnostic drug development, concentrating on small-molecule inhibitors that target kinase pathway aberrations, and we discuss the challenges in developing tumour‐agnostic agents.