Marcos Ostolga-Chavarría, Héctor Miranda-Astudillo, Diego González-Halphen
{"title":"Fine-tuned structural modifications enable specific drug design against multidrug-resistant pathogens","authors":"Marcos Ostolga-Chavarría, Héctor Miranda-Astudillo, Diego González-Halphen","doi":"10.1016/j.str.2025.02.001","DOIUrl":null,"url":null,"abstract":"In this issue of <em>Structure</em>, Krah et al.<span><span><sup>1</sup></span></span> present a comprehensive study combining molecular dynamics (MD) simulations, free-energy calculations, and <em>in vivo</em> mutagenesis experiments to investigate how water molecules interact with the F<sub>1</sub>F<sub>O</sub>-ATP synthase <em>c</em>-ring domain. Their findings highlight the potential of this bacterial enzyme as a drug target.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"67 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.02.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this issue of Structure, Krah et al.1 present a comprehensive study combining molecular dynamics (MD) simulations, free-energy calculations, and in vivo mutagenesis experiments to investigate how water molecules interact with the F1FO-ATP synthase c-ring domain. Their findings highlight the potential of this bacterial enzyme as a drug target.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.