LiF-Rich Cathode Electrolyte Interphases Homogenizing Li+ Fluxes toward Stable Interface in Li-Rich Mn-Based Cathodes

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qinting Jiang, Ming Li, Jun Li, Jingjing Wang, Gaini Zhang, Jing Wang, Jiaxuan Zuo, Guiqiang Cao, Ruixian Duan, Youchen Hao, Mengjiao Li, Zihao Yang, Haofei Yang, Mengxin Bai, Xuexia Song, Yukun Xi, Wenbin Li, Xueliang Sun, Xifei Li
{"title":"LiF-Rich Cathode Electrolyte Interphases Homogenizing Li+ Fluxes toward Stable Interface in Li-Rich Mn-Based Cathodes","authors":"Qinting Jiang,&nbsp;Ming Li,&nbsp;Jun Li,&nbsp;Jingjing Wang,&nbsp;Gaini Zhang,&nbsp;Jing Wang,&nbsp;Jiaxuan Zuo,&nbsp;Guiqiang Cao,&nbsp;Ruixian Duan,&nbsp;Youchen Hao,&nbsp;Mengjiao Li,&nbsp;Zihao Yang,&nbsp;Haofei Yang,&nbsp;Mengxin Bai,&nbsp;Xuexia Song,&nbsp;Yukun Xi,&nbsp;Wenbin Li,&nbsp;Xueliang Sun,&nbsp;Xifei Li","doi":"10.1002/adma.202417620","DOIUrl":null,"url":null,"abstract":"<p>Constructing a stable cathode-electrolyte interphase (CEI) is crucial to enhance the battery performance of Li-rich Mn-based oxide (LMO) cathodes. To achieve an ideal CEI, a gas-phase fluorination technique is proposed to pre-structure a robust LiF layer (≈1 nm) on the LMO surface. The designed LiF layer effectively modulates the electric field distribution on the electrode surface and mitigates undesirable side reactions between the electrode and electrolyte, thereby promoting the formation of a uniform LiF-rich CEI layer on the LMO-F-1. The optimized CEI facilitates homogeneous Li<sup>+</sup> fluxes across the electrode surface and enhances Li<sup>+</sup> diffusion in the electrode during (de)intercalation, contributing to a stable electrode-electrolyte interface. Moreover, the robust LiF-rich CEI layer effectively suppresses the decomposition of lithium salts in the electrolyte and reduces autocatalytic side reactions triggered by the by-products. In addition, it improves the structural stability of LMO by increasing the formation energies of oxygen and manganese vacancies. As a result, the modified LMO with the LiF-rich CEI retains 95% of its initial capacity after 100 cycles, demonstrating remarkable electrochemical stability. The proposed gas-phase Li<sup>+</sup> flux homogenization strategy offers a promising avenue for enhancing the interface stability of high-voltage cathode materials with lithium storage.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 15","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202417620","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing a stable cathode-electrolyte interphase (CEI) is crucial to enhance the battery performance of Li-rich Mn-based oxide (LMO) cathodes. To achieve an ideal CEI, a gas-phase fluorination technique is proposed to pre-structure a robust LiF layer (≈1 nm) on the LMO surface. The designed LiF layer effectively modulates the electric field distribution on the electrode surface and mitigates undesirable side reactions between the electrode and electrolyte, thereby promoting the formation of a uniform LiF-rich CEI layer on the LMO-F-1. The optimized CEI facilitates homogeneous Li+ fluxes across the electrode surface and enhances Li+ diffusion in the electrode during (de)intercalation, contributing to a stable electrode-electrolyte interface. Moreover, the robust LiF-rich CEI layer effectively suppresses the decomposition of lithium salts in the electrolyte and reduces autocatalytic side reactions triggered by the by-products. In addition, it improves the structural stability of LMO by increasing the formation energies of oxygen and manganese vacancies. As a result, the modified LMO with the LiF-rich CEI retains 95% of its initial capacity after 100 cycles, demonstrating remarkable electrochemical stability. The proposed gas-phase Li+ flux homogenization strategy offers a promising avenue for enhancing the interface stability of high-voltage cathode materials with lithium storage.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

富锂锰基阴极电解液界面相使锂离子通量趋于稳定
构建稳定的阴极-电解质界面(CEI)是提高富锂锰基氧化物(LMO)阴极电池性能的关键。为了获得理想的CEI,提出了一种气相氟化技术,在LMO表面预结构一个坚固的LiF层(≈1 nm)。所设计的LiF层有效地调节了电极表面的电场分布,减轻了电极与电解质之间的不良副反应,从而促进在LMO-F-1上形成均匀的富LiF CEI层。优化后的CEI有利于Li+在电极表面的均匀通量,并增强Li+在电极中的扩散,有助于稳定的电极-电解质界面。此外,坚固的富liff CEI层有效抑制了电解质中锂盐的分解,减少了副产物引发的自催化副反应。此外,通过提高氧和锰空位的形成能,提高了LMO的结构稳定性。结果表明,经过100次循环后,具有富liff CEI的改性LMO仍能保持95%的初始容量,表现出显著的电化学稳定性。所提出的气相Li+通量均匀化策略为提高具有锂存储的高压正极材料的界面稳定性提供了一条有前景的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信