SVHRSP protects against rotenone-induced neurodegeneration in mice by inhibiting TLR4/NF-κB-mediated neuroinflammation via gut microbiota

IF 6.7 1区 医学 Q1 NEUROSCIENCES
Mengdi Chen, Yu Zhang, Liyan Hou, Zirui Zhao, Peiyan Tang, Qingquan Sun, Jie Zhao, Qingshan Wang
{"title":"SVHRSP protects against rotenone-induced neurodegeneration in mice by inhibiting TLR4/NF-κB-mediated neuroinflammation via gut microbiota","authors":"Mengdi Chen, Yu Zhang, Liyan Hou, Zirui Zhao, Peiyan Tang, Qingquan Sun, Jie Zhao, Qingshan Wang","doi":"10.1038/s41531-025-00892-6","DOIUrl":null,"url":null,"abstract":"<p>Strong evidence indicates that remodeling gut microbiota may be an effective approach to combat Parkinson’s disease (PD). Scorpion Venom Heat-Resistant Synthesized Peptide (SVHRSP), a synthesized peptide discovered from scorpion venom, displays potent neuroprotection in multiple PD models. However, the potential mechanisms remain unclear. In this study, we demonstrated that SVHRSP effectively attenuated gastrointestinal function impairments and reinstated the microbiota composition in rotenone-induced PD mouse model. Microbiota depletion and FMT verified that the restored gut microbiota was necessary for SVHRSP-mediated neuroprotection against dopaminergic neurodegeneration in rotenone PD mice. Furthermore, SVHRSP gut microbiota-dependently attenuated BBB impairment, microglial activation, and gene expression of pro-inflammatory factors in rotenone-treated mice. Mechanistically, SVHRSP decreased the concentrations of LPS and HMGB1 in both serum and brain tissue, thereby inhibiting the TLR4/NF-κB signaling pathway in the brain of rotenone-treated mice. Together, our findings provided fresh perspectives on the mechanisms underlying SVHRSP-induced neuroprotection in PD.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"53 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-00892-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Strong evidence indicates that remodeling gut microbiota may be an effective approach to combat Parkinson’s disease (PD). Scorpion Venom Heat-Resistant Synthesized Peptide (SVHRSP), a synthesized peptide discovered from scorpion venom, displays potent neuroprotection in multiple PD models. However, the potential mechanisms remain unclear. In this study, we demonstrated that SVHRSP effectively attenuated gastrointestinal function impairments and reinstated the microbiota composition in rotenone-induced PD mouse model. Microbiota depletion and FMT verified that the restored gut microbiota was necessary for SVHRSP-mediated neuroprotection against dopaminergic neurodegeneration in rotenone PD mice. Furthermore, SVHRSP gut microbiota-dependently attenuated BBB impairment, microglial activation, and gene expression of pro-inflammatory factors in rotenone-treated mice. Mechanistically, SVHRSP decreased the concentrations of LPS and HMGB1 in both serum and brain tissue, thereby inhibiting the TLR4/NF-κB signaling pathway in the brain of rotenone-treated mice. Together, our findings provided fresh perspectives on the mechanisms underlying SVHRSP-induced neuroprotection in PD.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Parkinson's Disease
NPJ Parkinson's Disease Medicine-Neurology (clinical)
CiteScore
9.80
自引率
5.70%
发文量
156
审稿时长
11 weeks
期刊介绍: npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信