Non-trivial role of surrounding gases in triboluminescence: A comprehensive review

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Adis A. Tukhbatullin, Glyus L. Sharipov, Roman A. Nevshupa
{"title":"Non-trivial role of surrounding gases in triboluminescence: A comprehensive review","authors":"Adis A. Tukhbatullin, Glyus L. Sharipov, Roman A. Nevshupa","doi":"10.26599/frict.2025.9440998","DOIUrl":null,"url":null,"abstract":"<p>Research on triboluminescence phenomena has been comprehensively reviewed, with a focus on the activation mechanisms resulting from the dissipation of mechanical energy at interfaces. The complexity and interdisciplinary nature of this phenomenon, along with its dependence on gas composition and pressure, have been analyzed. Special attention was given to air, inert gases, polyatomic gases, and hydrocarbon gases. The influence of gas composition on triboluminescence is not straightforward. This is because at least three components are associated with different physical and chemical processes and activation mechanisms. These components include TL1: gas discharge luminescence. This occurs because of the generation of an electric field and dielectric breakdown of gases surrounding the mechanically activated zone of the material; TL2: photoluminescence of mechanically activated material. This results from the excitation of luminescent centers by the absorption of ultraviolet radiation from the gas discharge; TL3: material luminescence not related to photoluminescence. This is the least studied and most complex component. This can be related to the direct coupling of the mechanical force with the energy landscape of defects, impurities, and other centers. These centers can be excited and emit light during deexcitation. Other possibilities include luminescence excited by electric fields, exoelectron emission, etc. Therefore, the gas environment is crucial not only for gas discharge (as various gases can promote or quench it) but also for controlling other excitation and deexcitation processes. These processes occur through interactions of adsorbed films with stressed materials, tribochemical reactions, photochemical reactions, and so on. Furthermore, the potential application of triboluminescence for sensing gas composition is highlighted.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"2 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9440998","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Research on triboluminescence phenomena has been comprehensively reviewed, with a focus on the activation mechanisms resulting from the dissipation of mechanical energy at interfaces. The complexity and interdisciplinary nature of this phenomenon, along with its dependence on gas composition and pressure, have been analyzed. Special attention was given to air, inert gases, polyatomic gases, and hydrocarbon gases. The influence of gas composition on triboluminescence is not straightforward. This is because at least three components are associated with different physical and chemical processes and activation mechanisms. These components include TL1: gas discharge luminescence. This occurs because of the generation of an electric field and dielectric breakdown of gases surrounding the mechanically activated zone of the material; TL2: photoluminescence of mechanically activated material. This results from the excitation of luminescent centers by the absorption of ultraviolet radiation from the gas discharge; TL3: material luminescence not related to photoluminescence. This is the least studied and most complex component. This can be related to the direct coupling of the mechanical force with the energy landscape of defects, impurities, and other centers. These centers can be excited and emit light during deexcitation. Other possibilities include luminescence excited by electric fields, exoelectron emission, etc. Therefore, the gas environment is crucial not only for gas discharge (as various gases can promote or quench it) but also for controlling other excitation and deexcitation processes. These processes occur through interactions of adsorbed films with stressed materials, tribochemical reactions, photochemical reactions, and so on. Furthermore, the potential application of triboluminescence for sensing gas composition is highlighted.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信