Predicting Membrane Fouling of Submerged Membrane Bioreactor Wastewater Treatment Plants Using Machine Learning

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yunyi Zhu, Yuan Wang, Elisabeth Zhu, Zeyu Ma, Hanchen Wang, Chunsheng Chen, Jing Guan, T. David Waite
{"title":"Predicting Membrane Fouling of Submerged Membrane Bioreactor Wastewater Treatment Plants Using Machine Learning","authors":"Yunyi Zhu, Yuan Wang, Elisabeth Zhu, Zeyu Ma, Hanchen Wang, Chunsheng Chen, Jing Guan, T. David Waite","doi":"10.1021/acs.est.4c12835","DOIUrl":null,"url":null,"abstract":"Membrane fouling remains a significant challenge in the operation of membrane bioreactors (MBRs). Plant operators rely heavily on observations of filtration performance from noisy sensor data to assess membrane fouling conditions and lab-based protocols for plant maintenance, often leading to inaccurate estimations of future performance and delayed membrane cleaning. This challenge is further compounded by the difficulty in integrating existing complex mechanistic models with the Internet of Things (IoT) systems of wastewater treatment plants (WWTPs). By harnessing data obtained from WWTPs, along with innovative data denoising and model training strategies, we developed a machine learning application (MBR-Net) that is capable of forecasting membrane fouling, as indicated by permeability, for a full-scale submerged MBR plant in real time. We show that the trained model can effectively predict one-day-ahead changes in irreversible fouling under different desired fluxes, cleaning conditions and feedwater conditions (with MAPE &lt; 6.45%, MAE &lt; 3.71 LMH bar<sup>–1</sup>, and <i>R</i><sup>2</sup> &gt; 0.87 on two independent testing sets). Although data availability presented certain limitations in the model development process, the current results demonstrate the significant value of machine learning in membrane fouling predictions and in providing decision support for fouling mitigation strategies in full-scale WWTPs.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"47 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c12835","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane fouling remains a significant challenge in the operation of membrane bioreactors (MBRs). Plant operators rely heavily on observations of filtration performance from noisy sensor data to assess membrane fouling conditions and lab-based protocols for plant maintenance, often leading to inaccurate estimations of future performance and delayed membrane cleaning. This challenge is further compounded by the difficulty in integrating existing complex mechanistic models with the Internet of Things (IoT) systems of wastewater treatment plants (WWTPs). By harnessing data obtained from WWTPs, along with innovative data denoising and model training strategies, we developed a machine learning application (MBR-Net) that is capable of forecasting membrane fouling, as indicated by permeability, for a full-scale submerged MBR plant in real time. We show that the trained model can effectively predict one-day-ahead changes in irreversible fouling under different desired fluxes, cleaning conditions and feedwater conditions (with MAPE < 6.45%, MAE < 3.71 LMH bar–1, and R2 > 0.87 on two independent testing sets). Although data availability presented certain limitations in the model development process, the current results demonstrate the significant value of machine learning in membrane fouling predictions and in providing decision support for fouling mitigation strategies in full-scale WWTPs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信