Condensation of ZFP207 and U1 snRNP promotes spliceosome assembly

Yuenan Zhou, Chong Tong, Zuokun Shi, Yan Zhang, Xushen Xiong, Xiaohua Shen, Xiaoyu Li, Yafei Yin
{"title":"Condensation of ZFP207 and U1 snRNP promotes spliceosome assembly","authors":"Yuenan Zhou, Chong Tong, Zuokun Shi, Yan Zhang, Xushen Xiong, Xiaohua Shen, Xiaoyu Li, Yafei Yin","doi":"10.1038/s41594-025-01501-z","DOIUrl":null,"url":null,"abstract":"<p>The U1 small nuclear ribonucleoprotein (snRNP) has an essential role in initiating spliceosome assembly, yet the mechanism underlying its synergy with other splicing regulators for efficient spliceosome assembly remains elusive. Here we identify zinc finger protein 207 (ZFP207) as a key regulator of U1 snRNP function that substantially promotes spliceosome assembly. Acute depletion of ZFP207 results in a series of molecular phenotypes indicative of U1 snRNP dysregulation. Mechanistically, the N-terminal zinc finger domains of ZFP207 directly bind to stem-loop 3 of U1 snRNA, while its C-terminal intrinsically disordered regions undergo phase separation to form biomolecular condensates with U1 snRNP. These condensates create a crowded molecular environment that increases the local concentration of splicing snRNPs and regulators, thereby accelerating the speed of spliceosome assembly by facilitating interactions between U1 snRNP and other snRNPs. Collectively, our study demonstrates the critical role of phase separation in ensuring effective U1 snRNP function and promoting efficient spliceosome assembly.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01501-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The U1 small nuclear ribonucleoprotein (snRNP) has an essential role in initiating spliceosome assembly, yet the mechanism underlying its synergy with other splicing regulators for efficient spliceosome assembly remains elusive. Here we identify zinc finger protein 207 (ZFP207) as a key regulator of U1 snRNP function that substantially promotes spliceosome assembly. Acute depletion of ZFP207 results in a series of molecular phenotypes indicative of U1 snRNP dysregulation. Mechanistically, the N-terminal zinc finger domains of ZFP207 directly bind to stem-loop 3 of U1 snRNA, while its C-terminal intrinsically disordered regions undergo phase separation to form biomolecular condensates with U1 snRNP. These condensates create a crowded molecular environment that increases the local concentration of splicing snRNPs and regulators, thereby accelerating the speed of spliceosome assembly by facilitating interactions between U1 snRNP and other snRNPs. Collectively, our study demonstrates the critical role of phase separation in ensuring effective U1 snRNP function and promoting efficient spliceosome assembly.

Abstract Image

U1 小核核糖核蛋白(snRNP)在启动剪接体组装过程中起着至关重要的作用,但它与其他剪接调节因子协同作用以高效组装剪接体的机制仍未确定。在这里,我们发现锌指蛋白 207(ZFP207)是 U1 snRNP 功能的关键调控因子,能显著促进剪接体的组装。急性缺失 ZFP207 会导致一系列表明 U1 snRNP 失调的分子表型。从机理上讲,ZFP207 的 N 端锌指结构域直接与 U1 snRNA 的茎环 3 结合,而其 C 端内在无序区则发生相分离,与 U1 snRNP 形成生物分子凝聚体。这些凝聚物创造了一个拥挤的分子环境,增加了剪接 snRNPs 和调控因子的局部浓度,从而通过促进 U1 snRNPs 和其他 snRNPs 之间的相互作用加快了剪接体的组装速度。总之,我们的研究证明了相分离在确保 U1 snRNP 有效发挥作用和促进剪接体高效组装方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信