Giorgio Purpura, Hafiz Muhamad Saif, Andrea Culcasi, Sylwin Pawlowski, Joao Goulão Crespo, Andrea Cipollina
{"title":"Modelling selective lithium recovery from brines via membrane flow electrode capacitive de-ionization","authors":"Giorgio Purpura, Hafiz Muhamad Saif, Andrea Culcasi, Sylwin Pawlowski, Joao Goulão Crespo, Andrea Cipollina","doi":"10.1016/j.seppur.2025.132400","DOIUrl":null,"url":null,"abstract":"The recent growing demand for lithium worldwide, led by the Li-ion battery market, has sparked research into alternative sources of this material. In this context, selective lithium recovery from concentrated brines represents a sustainable and economical alternative to lithium mining activities. In this work, we developed a mathematical model of the recently implemented Lithium Membrane Flow Electrode Capacitive De-Ionization (Li-MFCDI) process, used to selectively extract lithium from a synthetic geothermal brine. The model was validated against the available experimental data and was used to perform a comprehensive parametric analysis. The model predicts the effects of the applied voltage, flow rates, and the adopted membranes on the process performance. These findings highlight the importance of the membrane conductivity-selectivity trade-off for process productivity. Furthermore, this simulation tool will substantially contribute to the development of this novel technology.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"8 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.132400","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The recent growing demand for lithium worldwide, led by the Li-ion battery market, has sparked research into alternative sources of this material. In this context, selective lithium recovery from concentrated brines represents a sustainable and economical alternative to lithium mining activities. In this work, we developed a mathematical model of the recently implemented Lithium Membrane Flow Electrode Capacitive De-Ionization (Li-MFCDI) process, used to selectively extract lithium from a synthetic geothermal brine. The model was validated against the available experimental data and was used to perform a comprehensive parametric analysis. The model predicts the effects of the applied voltage, flow rates, and the adopted membranes on the process performance. These findings highlight the importance of the membrane conductivity-selectivity trade-off for process productivity. Furthermore, this simulation tool will substantially contribute to the development of this novel technology.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.