Sulfur-doping tunes p-d orbital coupling over asymmetric Zn-Sn dual-atom for boosting CO2 electroreduction to formate

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Bo Peng, Hao She, Zihao Wei, Zhiyi Sun, Ziwei Deng, Zhongti Sun, Wenxing Chen
{"title":"Sulfur-doping tunes p-d orbital coupling over asymmetric Zn-Sn dual-atom for boosting CO2 electroreduction to formate","authors":"Bo Peng, Hao She, Zihao Wei, Zhiyi Sun, Ziwei Deng, Zhongti Sun, Wenxing Chen","doi":"10.1038/s41467-025-57573-4","DOIUrl":null,"url":null,"abstract":"<p>The interaction of <i>p-d</i> orbitals at bimetallic sites plays a crucial role in determining the catalytic reactivity, which facilitates the modulation of charges and enhances the efficiency of CO<sub>2</sub> electroreduction process. Here, we show a ligand co-etching approach to create asymmetric Zn-Sn dual-atom sites (DASs) within metal-organic framework (MOF)-derived yolk-shell carbon frameworks (named Zn<sub>1</sub>Sn<sub>1</sub>/SNC). The DASs comprise one Sn center (<i>p</i>-block) partially doped with sulfur and one Zn center (<i>d</i>-block) with N coordination, facilitating the coupling of <i>p-d</i> orbitals between the Zn-Sn dimer. The N-Zn-Sn-S/N arrangement displays an asymmetric distribution of charges and atoms, leading to a stable adsorption configuration of HCOO* intermediates. In H-type cell, Zn<sub>1</sub>Sn<sub>1</sub>/SNC exhibits an impressive formate Faraday efficiency of 94.6% at -0.84 V. In flow cell, the asymmetric electronic architecture of Zn<sub>1</sub>Sn<sub>1</sub>/SNC facilitates high accessibility, leading to a high current density of -315.2 mA cm<sup>-2</sup> at -0.90 V. Theoretical calculations show the asymmetric sites in Zn<sub>1</sub>Sn<sub>1</sub>/SNC with ideal adsorption affinity lower the CO<sub>2</sub> reduction barrier, thus improve the overall efficiency of CO<sub>2</sub> reduction.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57573-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction of p-d orbitals at bimetallic sites plays a crucial role in determining the catalytic reactivity, which facilitates the modulation of charges and enhances the efficiency of CO2 electroreduction process. Here, we show a ligand co-etching approach to create asymmetric Zn-Sn dual-atom sites (DASs) within metal-organic framework (MOF)-derived yolk-shell carbon frameworks (named Zn1Sn1/SNC). The DASs comprise one Sn center (p-block) partially doped with sulfur and one Zn center (d-block) with N coordination, facilitating the coupling of p-d orbitals between the Zn-Sn dimer. The N-Zn-Sn-S/N arrangement displays an asymmetric distribution of charges and atoms, leading to a stable adsorption configuration of HCOO* intermediates. In H-type cell, Zn1Sn1/SNC exhibits an impressive formate Faraday efficiency of 94.6% at -0.84 V. In flow cell, the asymmetric electronic architecture of Zn1Sn1/SNC facilitates high accessibility, leading to a high current density of -315.2 mA cm-2 at -0.90 V. Theoretical calculations show the asymmetric sites in Zn1Sn1/SNC with ideal adsorption affinity lower the CO2 reduction barrier, thus improve the overall efficiency of CO2 reduction.

Abstract Image

硫掺杂调节不对称Zn-Sn双原子上的p-d轨道耦合,促进CO2电还原生成甲酸
双金属位上p-d轨道的相互作用对催化活性起着至关重要的作用,有利于电荷的调制,提高了CO2电还原过程的效率。在这里,我们展示了一种配体共蚀刻方法,在金属有机骨架(MOF)衍生的蛋黄壳碳骨架(命名为Zn1Sn1/SNC)中产生不对称Zn-Sn双原子位点(das)。DASs由一个部分掺杂硫的Sn中心(p-嵌段)和一个具有N配位的Zn中心(d-嵌段)组成,促进了Zn-Sn二聚体之间p-d轨道的耦合。N- zn - sn - s /N排列显示电荷和原子的不对称分布,导致HCOO*中间体的稳定吸附构型。在h型电池中,Zn1Sn1/SNC在-0.84 V下表现出令人印象深刻的甲酸法拉第效率94.6%。在液流电池中,Zn1Sn1/SNC的非对称电子结构有利于高可达性,在-0.90 V时电流密度高达-315.2 mA cm-2。理论计算表明,具有理想吸附亲和力的Zn1Sn1/SNC中的不对称位点降低了CO2的还原势垒,从而提高了CO2的整体还原效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信