Wenpei Ye, Lijun Meng, Ruizhe Wang, Mengying Yan, Fan Yu, Yinzhou Bao, Haoyu Xing, Jun Li, Niğmet UZAL, Manhong Huang
{"title":"Surfactant modified PTFE-based forward osmosis membrane with high performance and superior stability","authors":"Wenpei Ye, Lijun Meng, Ruizhe Wang, Mengying Yan, Fan Yu, Yinzhou Bao, Haoyu Xing, Jun Li, Niğmet UZAL, Manhong Huang","doi":"10.1016/j.seppur.2025.132419","DOIUrl":null,"url":null,"abstract":"The absence of membranes with high stability and excellent permeation performance hinders the progress of forward osmosis (FO) technology. In this work, a high-strength polytetrafluoroethylene (PTFE) substrate was used for interfacial polymerization (IP) to fabricate FO membranes. The innovative approach enhances membrane performance by improving hydrophilicity with surfactant modification to facilitate better water transport in FO. Dodecyl trimethylammonium bromide (DTAB) was added into the<!-- --> <!-- -->aqueous phase to control the IP process, and the optimized DTAB concentration was determined to be 70 mg L<sup>−1</sup>, which was<!-- --> <!-- -->labeled as PTFE-DTAB<sub>70</sub> membrane. Characterization analysis showed that DTAB stabilized carboxyl groups in the PA layer through electrostatic interactions, inhibiting amide bond hydrolysis. After immersed for 60 days under extreme pH conditions (1–13), the membrane maintained high water flux (>16 LMH) and low reverse salt flux (<0.56 g L<sup>−1</sup>). Its chemical stability significantly surpassed that of commercial CTA membrane, with a 295 % increase in water flux at pH 13. When treating simulated wastewater, a 99.9 % chromium (Cr) rejection and a 96 % chemical oxygen demand (COD) rejection were obtained. The membrane showed great potential for treating high-salinity, strong acid and alkaline industrial wastewater. This study provides an innovative strategy for developing highly stable FO membranes and reveals the universal mechanism of surfactant molecular design in membrane separation.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"53 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.132419","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The absence of membranes with high stability and excellent permeation performance hinders the progress of forward osmosis (FO) technology. In this work, a high-strength polytetrafluoroethylene (PTFE) substrate was used for interfacial polymerization (IP) to fabricate FO membranes. The innovative approach enhances membrane performance by improving hydrophilicity with surfactant modification to facilitate better water transport in FO. Dodecyl trimethylammonium bromide (DTAB) was added into the aqueous phase to control the IP process, and the optimized DTAB concentration was determined to be 70 mg L−1, which was labeled as PTFE-DTAB70 membrane. Characterization analysis showed that DTAB stabilized carboxyl groups in the PA layer through electrostatic interactions, inhibiting amide bond hydrolysis. After immersed for 60 days under extreme pH conditions (1–13), the membrane maintained high water flux (>16 LMH) and low reverse salt flux (<0.56 g L−1). Its chemical stability significantly surpassed that of commercial CTA membrane, with a 295 % increase in water flux at pH 13. When treating simulated wastewater, a 99.9 % chromium (Cr) rejection and a 96 % chemical oxygen demand (COD) rejection were obtained. The membrane showed great potential for treating high-salinity, strong acid and alkaline industrial wastewater. This study provides an innovative strategy for developing highly stable FO membranes and reveals the universal mechanism of surfactant molecular design in membrane separation.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.