Dimensionality-enhanced mid-infrared light vortex detection based on multilayer graphene

IF 20.6 Q1 OPTICS
Dehong Yang, Jiawei Lai, Zipu Fan, Shiyu Wang, Kainan Chang, Lili Meng, Jinluo Cheng, Dong Sun
{"title":"Dimensionality-enhanced mid-infrared light vortex detection based on multilayer graphene","authors":"Dehong Yang, Jiawei Lai, Zipu Fan, Shiyu Wang, Kainan Chang, Lili Meng, Jinluo Cheng, Dong Sun","doi":"10.1038/s41377-024-01735-4","DOIUrl":null,"url":null,"abstract":"<p>Recent conceptual demonstrations of direct photocurrent readout of light vortices have enabled the development of light orbital angular momentum-sensitive focal plane arrays and on-chip integration of orbital angular momentum detection. However, known orbital angular momentum-sensitive materials are limited to two topological Weyl Semimetals belonging to the <i>C</i><sub><i>2v</i></sub> point group, namely, WTe<sub>2</sub> and TaIrTe<sub>4</sub>. Both are fragile under ambient conditions and challenging for large-scale epitaxial growth. In this work, we demonstrate that multilayer graphene, which is complementary metal–oxide–semiconductor compatible and epitaxially growable at the wafer scale, is applicable for orbital angular momentum detection in the mid-infrared region. Using a multilayer graphene photodetector with a designed U-shaped electrode geometry, we demonstrate that the topological charge of orbital angular momentum can be detected directly through the orbital photogalvanic effect and that the orbital angular momentum recognition capability of multilayer graphene is an order of magnitude greater than that of TaIrTe<sub>4</sub>. We found that the detection capability of multilayer graphene is enabled by the enhanced orbital photogalvanic effect response due to the reduced dimensionality and scattering rate. Our work opens a new technical route to improve orbital angular momentum recognition capability and is immediately applicable for large-scale integration of ambient stable, mid-infrared direct orbital angular momentum photodetection devices.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"53 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01735-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent conceptual demonstrations of direct photocurrent readout of light vortices have enabled the development of light orbital angular momentum-sensitive focal plane arrays and on-chip integration of orbital angular momentum detection. However, known orbital angular momentum-sensitive materials are limited to two topological Weyl Semimetals belonging to the C2v point group, namely, WTe2 and TaIrTe4. Both are fragile under ambient conditions and challenging for large-scale epitaxial growth. In this work, we demonstrate that multilayer graphene, which is complementary metal–oxide–semiconductor compatible and epitaxially growable at the wafer scale, is applicable for orbital angular momentum detection in the mid-infrared region. Using a multilayer graphene photodetector with a designed U-shaped electrode geometry, we demonstrate that the topological charge of orbital angular momentum can be detected directly through the orbital photogalvanic effect and that the orbital angular momentum recognition capability of multilayer graphene is an order of magnitude greater than that of TaIrTe4. We found that the detection capability of multilayer graphene is enabled by the enhanced orbital photogalvanic effect response due to the reduced dimensionality and scattering rate. Our work opens a new technical route to improve orbital angular momentum recognition capability and is immediately applicable for large-scale integration of ambient stable, mid-infrared direct orbital angular momentum photodetection devices.

Abstract Image

基于多层石墨烯的维数增强中红外光涡旋检测
最近关于光涡旋直接光电流读出的概念演示,使光轨道角动量敏感焦平面阵列和轨道角动量检测的片上集成得以发展。然而,已知的轨道角动量敏感材料仅限于两种属于C2v点群的拓扑Weyl半金属,即WTe2和TaIrTe4。两者在环境条件下都是脆弱的,并且对大规模外延生长具有挑战性。在这项工作中,我们证明了多层石墨烯是互补金属-氧化物-半导体兼容的,并且在晶片尺度上可外延生长,适用于中红外区域的轨道角动量检测。利用设计的u型电极几何形状的多层石墨烯光电探测器,我们证明了可以通过轨道光电效应直接检测轨道角动量的拓扑电荷,并且多层石墨烯的轨道角动量识别能力比TaIrTe4大一个数量级。我们发现多层石墨烯的探测能力是通过降低维数和散射率而增强的轨道光电效应响应而实现的。本研究为提高轨道角动量识别能力开辟了一条新的技术路线,可立即应用于环境稳定的中红外直接轨道角动量光电探测装置的大规模集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信