Clifford Rostomily, Heidi Lee, Amy Tresenrider, Riza Daza, Andrew Mullen, Jay Shendure, David Kimelman, Cole Trapnell
{"title":"An Improved, High-Yield Method for Isolating Nuclei from Individual Zebrafish Embryos for Single-Nucleus RNA Sequencing.","authors":"Clifford Rostomily, Heidi Lee, Amy Tresenrider, Riza Daza, Andrew Mullen, Jay Shendure, David Kimelman, Cole Trapnell","doi":"10.1089/zeb.2024.0175","DOIUrl":null,"url":null,"abstract":"<p><p>Zebrafish is an ideal system to study the effect(s) of chemical, genetic, and environmental perturbations on development due to their high fecundity and fast growth. Recently, single-cell sequencing has emerged as a powerful tool to measure the effect of these perturbations at a whole-embryo scale. These types of experiments rely on the ability to isolate nuclei from a large number of individually barcoded zebrafish embryos in parallel. Here, we report a method for efficiently isolating high-quality nuclei from zebrafish embryos in a 96-well plate format by bead homogenization in a lysis buffer. Through head-to-head single-cell combinatorial indexing RNAseq experiments, we demonstrate that this method represents a substantial improvement over enzymatic dissociation and that it is compatible with a wide range of developmental stages.</p>","PeriodicalId":94273,"journal":{"name":"Zebrafish","volume":" ","pages":"42-45"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/zeb.2024.0175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Zebrafish is an ideal system to study the effect(s) of chemical, genetic, and environmental perturbations on development due to their high fecundity and fast growth. Recently, single-cell sequencing has emerged as a powerful tool to measure the effect of these perturbations at a whole-embryo scale. These types of experiments rely on the ability to isolate nuclei from a large number of individually barcoded zebrafish embryos in parallel. Here, we report a method for efficiently isolating high-quality nuclei from zebrafish embryos in a 96-well plate format by bead homogenization in a lysis buffer. Through head-to-head single-cell combinatorial indexing RNAseq experiments, we demonstrate that this method represents a substantial improvement over enzymatic dissociation and that it is compatible with a wide range of developmental stages.