Machine-learning approach facilitates prediction of whitefly spatiotemporal dynamics in a plant canopy.

Denis O Kiobia, Canicius J Mwitta, Peter C Ngimbwa, Jason M Schmidt, Guoyu Lu, Glen C Rains
{"title":"Machine-learning approach facilitates prediction of whitefly spatiotemporal dynamics in a plant canopy.","authors":"Denis O Kiobia, Canicius J Mwitta, Peter C Ngimbwa, Jason M Schmidt, Guoyu Lu, Glen C Rains","doi":"10.1093/jee/toaf035","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-specific insect scouting and prediction are still challenging in most crop systems. In this article, a machine-learning algorithm is proposed to predict populations during whiteflies (Bemisia tabaci, Hemiptera; Gennadius Aleyrodidae) scouting and aid in determining the population distribution of adult whiteflies in cotton plant canopies. The study investigated the main location of adult whiteflies relative to plant nodes (stem points where leaves or branches emerge), population variation within and between canopies, whitefly density variability across fields, the impact of dense nodes on overall canopy populations, and the feasibility of using machine learning for prediction. Daily scouting was conducted on 64 non-pesticide cotton plants, focusing on all leaves of a node with the highest whitefly counts. A linear mixed-effect model assessed distribution over time, and machine-learning model selection identified a suitable forecasting model for the entire canopy whitefly population. Findings showed that the top 3 to 5 nodes are key habitats, with a single node potentially accounting for 44.4% of the full canopy whitefly population. The Bagging Ensemble Artificial Neural Network Regression model accurately predicted canopy populations (R² = 85.57), with consistency between actual and predicted counts (P-value > 0.05). Strategic sampling of the top nodes could estimate overall plant populations when taking a few samples or transects across a field. The suggested machine-learning model could be integrated into computing devices and automated sensors to predict real-time whitefly population density within the entire plant canopy during scouting operations.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of economic entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jee/toaf035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-specific insect scouting and prediction are still challenging in most crop systems. In this article, a machine-learning algorithm is proposed to predict populations during whiteflies (Bemisia tabaci, Hemiptera; Gennadius Aleyrodidae) scouting and aid in determining the population distribution of adult whiteflies in cotton plant canopies. The study investigated the main location of adult whiteflies relative to plant nodes (stem points where leaves or branches emerge), population variation within and between canopies, whitefly density variability across fields, the impact of dense nodes on overall canopy populations, and the feasibility of using machine learning for prediction. Daily scouting was conducted on 64 non-pesticide cotton plants, focusing on all leaves of a node with the highest whitefly counts. A linear mixed-effect model assessed distribution over time, and machine-learning model selection identified a suitable forecasting model for the entire canopy whitefly population. Findings showed that the top 3 to 5 nodes are key habitats, with a single node potentially accounting for 44.4% of the full canopy whitefly population. The Bagging Ensemble Artificial Neural Network Regression model accurately predicted canopy populations (R² = 85.57), with consistency between actual and predicted counts (P-value > 0.05). Strategic sampling of the top nodes could estimate overall plant populations when taking a few samples or transects across a field. The suggested machine-learning model could be integrated into computing devices and automated sensors to predict real-time whitefly population density within the entire plant canopy during scouting operations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信