ETHOS.REFLOW: An open-source workflow for reproducible renewable energy potential assessments.

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Patterns Pub Date : 2025-02-04 eCollection Date: 2025-02-14 DOI:10.1016/j.patter.2025.101172
Tristan Pelser, Jann Michael Weinand, Patrick Kuckertz, Detlef Stolten
{"title":"ETHOS.REFLOW: An open-source workflow for reproducible renewable energy potential assessments.","authors":"Tristan Pelser, Jann Michael Weinand, Patrick Kuckertz, Detlef Stolten","doi":"10.1016/j.patter.2025.101172","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate renewable energy resource assessments are necessary for energy system planning to meet climate goals, yet inconsistencies in methods and data can produce significant differences in results. This paper introduces ETHOS.REFLOW, a Python-based workflow manager that ensures transparency and reproducibility in energy potential assessments. The tool enables reproducible analyses with minimal effort by automating the entire workflow, from data acquisition to reporting. We demonstrate its functionality by estimating the technical offshore wind potential of the North Sea, for fixed-foundation and mixed-technology (including floating turbines) scenarios. Two methods for turbine siting (explicit placement vs. uniform power density) and wind datasets are compared. Results show a maximum installable capacity of 768-861 GW and an annual yield of 2,961-3,047 TWh, with capacity factors between 41% and 46% and significant temporal variability. ETHOS.REFLOW offers a robust framework for reproducible energy potential studies, enabling energy system modelers to build on existing work and fostering trust in findings.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 2","pages":"101172"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873006/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2025.101172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate renewable energy resource assessments are necessary for energy system planning to meet climate goals, yet inconsistencies in methods and data can produce significant differences in results. This paper introduces ETHOS.REFLOW, a Python-based workflow manager that ensures transparency and reproducibility in energy potential assessments. The tool enables reproducible analyses with minimal effort by automating the entire workflow, from data acquisition to reporting. We demonstrate its functionality by estimating the technical offshore wind potential of the North Sea, for fixed-foundation and mixed-technology (including floating turbines) scenarios. Two methods for turbine siting (explicit placement vs. uniform power density) and wind datasets are compared. Results show a maximum installable capacity of 768-861 GW and an annual yield of 2,961-3,047 TWh, with capacity factors between 41% and 46% and significant temporal variability. ETHOS.REFLOW offers a robust framework for reproducible energy potential studies, enabling energy system modelers to build on existing work and fostering trust in findings.

风气。REFLOW:可再生能源潜力评估的开源工作流程。
准确的可再生能源资源评估对于实现气候目标的能源系统规划是必要的,然而方法和数据的不一致可能导致结果的显著差异。本文介绍了ETHOS。REFLOW,一个基于python的工作流管理器,确保能源潜力评估的透明度和可重复性。该工具通过自动化从数据获取到报告的整个工作流程,以最小的努力实现可重复的分析。我们通过估算北海固定基础和混合技术(包括浮动涡轮机)方案的海上风电技术潜力来展示其功能。比较了涡轮机选址的两种方法(明确放置与均匀功率密度)和风力数据集。结果表明,该电站最大装机容量为768 ~ 861 GW,年发电量为2961 ~ 3047 TWh,容量因子在41% ~ 46%之间,且具有显著的时间变异性。风气。REFLOW为可重复的能源潜力研究提供了一个强大的框架,使能源系统建模者能够建立在现有工作的基础上,并促进对研究结果的信任。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信